
Collection of DRAGONS Workshops
Release 1.1

Kathleen Labrie

April 2023

CONTENTS:

1 Basic DRAGONS Workshop 1
1.1 Learning Objectives . 1
1.2 What is DRAGONS . 2
1.3 What are Recipes and Recipe Libraries . 4
1.4 What are primitives . 6
1.5 Demo imaging . 8
1.6 Explore data . 11
1.7 Local calibration manager . 13
1.8 Using reduce . 15
1.9 Customize Recipes . 19
1.10 Tools . 21
1.11 Resources . 25
1.12 Solutions to exercises . 25

2 Basic DRAGONS Workshop - Short Version 35
2.1 Learning Objectives . 35
2.2 What is DRAGONS . 36
2.3 What are Recipes, Recipe Libraries, and Primitives . 38
2.4 Demo imaging . 44
2.5 Explore data . 47
2.6 Local calibration manager . 47
2.7 Using reduce . 50
2.8 Customize Recipes . 52
2.9 Tools . 54
2.10 Resources . 58
2.11 Solutions to exercises . 58

3 Indices and tables 65

i

ii

CHAPTER

ONE

BASIC DRAGONS WORKSHOP

1.1 Learning Objectives

This material is built for a 2-hr workshop, planning on 90 minutes for the workshop and 30 minutes for questions and
helping participants.

In this workshop, the participants will gain a basic understanding about the following topic:

• What is DRAGONS, what it isn’t.

• What is a typical DRAGONS workflow.

• What are the principal components of DRAGONS.

• What is a recipe, a recipe library, and a primitive.

• How to do coarse inspection of the data.

• How to use the calibration manager.

• How to customize input parameters and recipes.

• How to control reduce.

• What utility tools are available and how to use them.

This workshop tries to cover a lot in a short period of time. The focus will be on some key, often needed elements. The
participants should refer to the DRAGONS documentation for more in-depth information.

This workshop uses the command-line interface to DRAGONS. An API is available but will not be covered in this
workshop.

1.1.1 Setting up

The participants who wish to following along and run the examples and exercises are expected to have already installed
DRAGONS on their computer. See the installation instructions, .

Follow the Python 3 and DRAGONS instructions, IRAF is not needed. Make sure that you do the steps in the “Configure
DRAGONS” section.

Important: This workshop is written for DRAGONS v3.1

The participants will need to download the data package to run the examples and the exercises:

http://www.gemini.edu/sciops/data/software/datapkgs/niriim_tutorial_datapkg-extended-v1.tar

Download it and unpack it somewhere convenient.

1

http://dragons.readthedocs.io/en/stable
http://www.gemini.edu/sciops/data/software/datapkgs/niriim_tutorial_datapkg-extended-v1.tar

Collection of DRAGONS Workshops, Release 1.1

cd <somewhere convenient>
tar xvf niriim_tutorial_datapkg-extended-v1.tar
bunzip2 niriimg_tutorial/playdata/example1/*.bz2

The datasets are found in the subdirectory niriimg_tutorial/playdata/example1/, and we will work in the sub-
directory named niriimg_tutorial/playground.

Note: If you are attending a live workshop, it is advisable to also download the preprocessed data package in case you
encounter technical difficulties that prevents you from running the full demo yourself. The content of that package will
allow you to continue with most of the exercises using those preprocessed data. Download the “just-in-case” package
at:

https://drive.google.com/file/d/1sJd8bHUFZ3-dNVT3_VllcqplnoSZr4LJ/view?usp=sharing

You do not need to do anything with it now other then keeping it somewhere safe. Hopefully, everything will run
smoothly and you will not need it.

1.2 What is DRAGONS

1.2.1 What it is

DRAGONS is a platform for the reduction and processing of astronomical data. It is a Python meta-package that
includes infrastructure for automation and algorithms for processing astronomical data. Currently, it focuses on the
reduction of Gemini data, but hooks are available for expansion to data from other observatories.

Now really, what is DRAGONS?

With a little bit of guidance from you, DRAGONS will reduce your Gemini data in a standard way, rapidly, with little
fuss. With a bit more guidance from you, DRAGONS will let you optimize the reduction for your specific sources and
science objectives.

DRAGONS is operated through the reduce command from the shell, or the Reduce class from a Python script. You
choose. For clarity, we will refer to reduce only from now on, but it’s the same thing. A call to reduce activates the
“Recipe System” which is what automates everything.

When reduce is called, the first FITS file is opened and identified, then the libraries of algorithms collected as “prim-
itives” and “recipes” will be searched and the best matches will be selected and run on the data.

The FITS files are opened with the astrodata facility. When a FITS file is opened with astrodata, it “knows about
itself”. For example, it knows that it is a NIRI file and an IMAGING FLAT. This is how the Recipe System will know
which recipes and which primitives to load and run.

The other important component of the DRAGONS automation infrastructure is the calibration manager. It is operated
with the caldb command. (Again, there’s an API too.) This accesses a lightweight local sqlite database that will store
information about your locally-processed calibrations. When a primitive is run and needs a calibration, the system will
automatically identify the best matched processed calibration and use it, you do not have to specify it on the command
line. (Though, you can if you really want to.)

Then there’s a series of utilities for sorting through the data and learning about the primitives and the recipes.

Here’s what DRAGONS can look like from a user’s point view:

dataselect *.fits --tags=FLAT -o flat.lis
dataselect *.fits --expr="object='mycooltarget'" -o sci.lis

(continues on next page)

2 Chapter 1. Basic DRAGONS Workshop

https://drive.google.com/file/d/1sJd8bHUFZ3-dNVT3_VllcqplnoSZr4LJ/view?usp=sharing

Collection of DRAGONS Workshops, Release 1.1

(continued from previous page)

caldb init
reduce @flat.lis
caldb add *_flat.fits
reduce @sci.lis

The steps are:

1. Create your lists of input data.

2. Initialize your calibration database.

3. Reduce your calibrations and upload the info to the database (the upload can be automated).

4. Reduce your science, it will pick up the calibrations by itself.

As straightforward as a reduction can be, it can be customized to match your needs. The options to the primitives can
be adjusted, the recipes themselves can be adjusted.

In this basic introduction to DRAGONS, we will explore all this and learn how to have DRAGONS do our bidding.

1.2.2 What it is not

DRAGONS is not a data analysis package. DRAGONS prepares the data for analysis but does not offer tools to do the
analysis. Also, DRAGONS is also not a replacement for IRAF.

To inspect your data, to do any sort of analysis like photometry, measuring redshift, calculating equivalent width,
etc, you will have to find another tool. DRAGONS does provide a primitive to display an image to ds9, but it will just
display it. Similarly, there is a tool to plot a 1D spectrum, and again, it will just plot it, it does not offer any measurement
capabilities.

Any analysis-type tools are beyond the scope of DRAGONS.

1.2.3 Components in action

The diagram below illustrates how the components communicate with each other and in particular how the astrodata
tags and descriptors are passed around to make decisions about the best matched recipe, primitive sets, and calibrations.

1.2. What is DRAGONS 3

Collection of DRAGONS Workshops, Release 1.1

1.3 What are Recipes and Recipe Libraries

A DRAGONS recipe is a set of instructions, called primitives, that processes data in a certain way. Depending on the
recipe, the input data can be in any state of processing. Most often though, people will want to process Gemini raw
data into a master calibration or a processed calibrated output.

A recipe library is a collection of recipes. The recipes in a library have one thing in common: they all apply to the
same type of data. When DRAGONS search for a matching recipe for some input data, it searches for a recipe library.
In each library, one recipe is set as the default recipe. To use the others, the user needs to specify the name of the
non-default recipes.

Let’s look at examples and tools.

4 Chapter 1. Basic DRAGONS Workshop

Collection of DRAGONS Workshops, Release 1.1

1.3.1 Recipes

This is what a recipe looks like:

def reduce(p):
p.prepare()
p.addDQ()
p.removeFirstFrame()
p.ADUToElectrons()
p.addVAR(read_noise=True, poisson_noise=True)
p.nonlinearityCorrect()
p.darkCorrect()
p.flatCorrect()
p.separateSky()
p.associateSky(stream='sky')
p.skyCorrect(instream='sky', mask_objects=False, outstream='skysub')
p.detectSources(stream='skysub')
p.transferAttribute(stream='sky', source='skysub', attribute='OBJMASK')
p.clearStream(stream='skysub')
p.associateSky()
p.skyCorrect(mask_objects=True)
p.detectSources()
p.adjustWCSToReference()
p.resampleToCommonFrame()
p.stackFrames()
p.writeOutputs()

A recipe is a Python function that calls “primitives” sequentially. The user does not need to know Python to understand
more or less what is being done to the data when the recipe is run. From the recipe above, we can read that the data
will be corrected for dark current, for flat field effects, the sky background will be subtracted and the frames will be
stacked. The p argument is the primitive set that matches the input. We will talk about that in the next chapter.

Exploring recipes

can be used to see which recipe DRAGONS with run by default given the input data. The tool’s basic usage signature
is:

showrecipes fitsfile_name.fits

To see more options, try showrecipes -h.

Exercise - Recipes 1

The file N20160102S0373.fits, in the playdata/example1 directory, is a raw “lamp-on” flat.

• Get the default recipe for a NIRI flat displayed on the terminal

• Find the name of the default recipe.

[Solution]

1.3. What are Recipes and Recipe Libraries 5

Collection of DRAGONS Workshops, Release 1.1

1.3.2 Recipe libraries

Recipes are stored in recipe libraries, or in Python language, a module. A recipe library can have one or more recipes
in them. One recipe is identified as the default recipe.

When DRAGONS searches for a recipe, it is actually searching for a matching recipe library. Once found, it will run
the default recipe, unless instructed otherwise by the user.

The recipe libraries are associated with the input files by matching astrodata tags (). The tags are qualifiers like
“NIRI”, “IMAGE”, “FLAT”. The tags of the first file in the list of inputs are used by the matching algorithm. Each
recipe library is assigned a set of tags that defines which type of data this library is for.

Exercise - Recipes 2

The file N20160102S0423.fits in the playdata/example1 directory is a raw dark.

• Find the location of the recipe library on your disk.

• What are the tags assigned to the input file?

• What are the tags assigned to that recipe library?

[Solution]

As mentioned above, a recipe library can have more than one recipe. To see the list of recipes, has the option --all.
Then, to see the sequence of primitives for one of those recipes, there’s the option -r.

DRAGONS has the concept of “reduction mode”. There are three modes: the science quality mode, “sq”, the quicklook
mode, “ql”, and the quality assessment mode, “qa”. You can safely ignore the “qa” mode, it is used exclusively at the
observatory, at night, to help with the assessment of the sky conditions and the resulting quality of the data. The mode
can be specified in with the -m flag. The default is “sq”.

To see all the flags and option, showrecipes -h.

Exercise - Recipes 3

For the file N20160102S0270.fits in the playdata/example1 directory:

• List all matching recipes. Note the “sq”, and the “qa” recipes.

• Show the makeSkyFlat recipe. (“sq” is the default.)

• Show the reduce recipe for “qa” mode.

[Solution]

1.4 What are primitives

1.4.1 Primitives and primitive sets

A primitive is a data reduction step involving a transformation of the data or providing a service. By convention, the
primitives are named to convey the scientific meaning of the transformation. For example biasCorrect will remove
the bias signal from the input data.

A primitive is always a member of a primitive set. It is the primitive set that gets matched to the data by the Recipe
System, not the individual primitives.

6 Chapter 1. Basic DRAGONS Workshop

Collection of DRAGONS Workshops, Release 1.1

Technically, a primitive is a method of a primitive class. A primitive class gets associated with the input dataset by
matching the astrodata tags. Once associated, all the primitives in that class, locally defined or inherited, are available
to reduce that dataset. We refer to that collection of primitives as a “primitive set”.

All the primitives are currently found in the Python package geminidr. In there, there is a large inheritance tree of
primitive classes from very generic to very specific.

For example, NIRI images will be associated with the NIRIImage primitive set. This set contains all the primitives it
needs through primitives defined in NIRIImage itself and through its inheritance tree. We illustrate that tree in Figure
1.

Fig. 1: Figure 1: NIRIImage inheritance tree.

Once the primitive set is identified, DRAGONS will send that to the selected recipe as that p argument we saw in the
previous chapter.

1.4.2 Primitive input parameters

Also attached to a primitive set are the input parameters for each primitives and the defaults appropriate for that primitive
set, that is for that type of data.

For the same generic primitive, the default values for input parameters for NIRI data can be different from the defaults
applicable to GMOS data. Even the set of available input parameters can be different, though we try to keep things as
uniform as possible.

We will learn later how to customize the values of input parameters. The first step however is to see what the input
parameters are and what their default values are. This is done with the command.

Because the input parameters can be different for different type of data, the command requires the name of file, and
then of course the name of the primitive you want to learn about.

The command signature is as follow:

showpars filename primitive_name

Exercise - Primitives 1

Using the science frame N20160102S0270.fits located in directory playdata/example1, find the answer to the
questions below. First, show the recipe for that file to see the list of primitives. (Hint: showrecipes)

1. What is the default operation used to combine the sky frames during sky correction?

1.4. What are primitives 7

Collection of DRAGONS Workshops, Release 1.1

2. Which parameter from which primitive do I need to modify to turn off the dark correction?

3. Which parameter from which primitive do I need to modify to change the rejection method during the final
stacking of the frames? What are the available options?

[Solution]

1.5 Demo imaging

To get ourselves oriented and get a feel for how data is processed with DRAGONS, we will run a full reduction on our
sample data. The full tutorial for reducing NIRI data can be found at .

Here, we go through the steps with a bit less discussion than in the full tutorial as the purpose is simply to provide some
context and an idea of a typical data reduction flow to those who have not experience it before.

The observations are of an extended source, a nearby galaxy. The instrument used is NIRI. The science sequence is a
series of dithers on target with full offset to sky. We will create a master dark, a master flat, a reduced flux standard,
and finally create a calibrated, sky-subtracted stack of the science observations.

Let’s run all the steps.

1. Set up the local calibration manager

2. Create the file lists

3. Create the calibration files (dark, flat)

4. Reduce the flux standard

5. Reduce the science observations

cd <where_the_data_package_is>/niriimg_tutorial/playground

1.5.1 Set up the local calibration manager

We will discuss the local calibration manager in a later chapter.

The calibration manager is the first thing to set up when starting on a data reduction project. It provides the automated
calibration association.

The file to pay attention to is: ~/.dragons/dragonsrc (DRAGONS v3.1+)

Edit that file to contain the following:

[calibs]
databases = <where_the_data_package_is>/niriimg_tutorial/playground/cal_manager.db get

In this configuration, with the “get” flag, DRAGONS will retrieve the processed calibration automatically from that
database. You could add “store” after the “get” to have DRAGONS add the processed calibrations to the database
automatically (effectively running caldb add for you). Here we will add the calibrations it manually.

About the path for databases, we recommend the directory you are using to work on the data. But it can be anywhere.

Once the configuration file is set up, initialize the database. This needs to be done only once per database.

caldb init

This creates a new file, cal_manager.db, in the directory specified by databases.

8 Chapter 1. Basic DRAGONS Workshop

Collection of DRAGONS Workshops, Release 1.1

1.5.2 Create the file lists

The user has to sort the files. DRAGONS is a “User-in-the-Loop” pipeline. We have some tools to help. We will have
a closer look at them later.

We have long darks that match the science, a series of lamp-on and lamp-off flats, a set of on-target dithered observations
for a flux standard, and a set of on-target dithered and off-target dithered observations for the science target.

dataselect ../playdata/example1/*.fits --tags DARK --expr='exposure_time==20' -o␣
→˓darks20s.lis

dataselect ../playdata/example1/*.fits --tags FLAT -o flats.lis

dataselect ../playdata/example1/*.fits --expr='object=="FS 17"' -o stdstar.lis

dataselect ../playdata/example1/*.fits --expr='object=="SN2014J"' -o target.lis

1.5.3 Add static BPM to calibration database

The static BPMs are downloaded from the archive (but included here in our data package).

caldb add ../playdata/example1/bpm_20010317_niri_niri_11_full_1amp.fits

1.5.4 Create the master dark and the master flat

Dark

Create the master dark and add it to the calibration manager.

reduce @darks20s.lis
caldb add N20160102S0423_dark.fits

The @ character before the name of the input file is the “at-file” syntax. We will look into this later.

Flat

Create the master flat from the lamp-on and lamp-off flats and add it to the calibration database.

reduce @flats.lis
caldb add N20160102S0373_flat.fits

1.5.5 Reduce the flux standard

This is short series of on-target dither observations. Darks are not obtained for NIRI flux standard so we turn that step
off. The flat will be picked up from the calibration database.

reduce @stdstar.lis -p darkCorrect:do_cal=skip

1.5. Demo imaging 9

Collection of DRAGONS Workshops, Release 1.1

1.5.6 Reduce the science observations

The sequence is a set of dither on target with full offsets to sky. DRAGONS will sort them during the sky correction.
All calibrations are picked up automatically from the calibration database. Because the target fills the field of view, we
need to turn off the scaling of the sky frames.

reduce @target.lis -p skyCorrect:scale_sky=False

10 Chapter 1. Basic DRAGONS Workshop

Collection of DRAGONS Workshops, Release 1.1

1.6 Explore data

Once we have reduced our data, we probably want to look at. In fact, even before we start the reduction, we should
look at the raw data in case of issues.

DRAGONS is not an analysis package. But it does offer a basic way to display images.

The display and inspect primitives can be used to visually inspect the data with ds9. Those are primitives not
recipes, yet reduce can run individual primitives.

Note: ds9 must be launched by the user ahead of running the primitive.

1.6.1 Display

To display an image to ds9:

reduce -r display N20160102S0271_stack.fits

By default, the saturated pixels are marked. This can be turned off by setting the threshold parameter to “None”.

1.6.2 Inspect

It is recommended to inspect the raw data prior to reducing the data. A quick visual inspection can catch obviously
bad data, or flag some frames for more detailed inspection. Having to run display on each frame individually would
be painful. The primitive inspect can be used here. It accepts a list of file and will display each frame in sequence,
adding a short pause between the frames. The length of the pause can be controlled with the pause parameter.

reduce -r inspect @stdstar.lis

Exercise - Explore 1

1. Display N20160102S0271_stack.fits to buffer 2 and turn off the saturation marking.

2. Reduce the time between frames to 1 second in inspect.

Hint: reduce file.fits -r primitive -p primitive:parameter=value

[Solution]

1.6.3 Accessing table content

Some output files will have table information. Once written to disk as a FITS file, the tables are accessible as any FITS
files. A common table is a list of sources detected by the primitive detectSources.

Let say that we want to get position of the sources in the flux standard stack we produced in the previous chapter. First,
we run detectSources since it was not run after the stack was created.

reduce -r detectSources N20160102S0296_stack.fits

This will add a table with object coordinates, magnitudes, etc. The output file is
N20160102S0296_sourcesDetected.fits. Use your preferred tool to access the FITS table named OBJCAT
from that output. Or you can use DRAGONS’ astrodata to access the table as an Astropy Table.

1.6. Explore data 11

Collection of DRAGONS Workshops, Release 1.1

1 import astrodata
2 import gemini_instruments
3

4 ad = astrodata.open('N20160102S0296_sourcesDetected.fits')
5 ad.info()

Filename: N20160102S0296_sourcesDetected.fits
Tags: GEMINI IMAGE NIRI NORTH PREPARED SIDEREAL

Pixels Extensions
Index Content Type Dimensions Format
[0] science NDAstroData (1195, 1195) float32

.variance ndarray (1195, 1195) float32

.mask ndarray (1195, 1195) uint16

.OBJCAT Table (29, 43) n/a

.OBJMASK ndarray (1195, 1195) uint8

6 ad[0].OBJCAT

<Table length=29>
NUMBER X_IMAGE Y_IMAGE ERRX2_IMAGE ... REF_MAG REF_MAG_ERR PROFILE_FWHM␣
→˓PROFILE_EE50
int32 float32 float32 float64 ... float32 float32 float32 ␣
→˓ float32
------ --------- ---------- ---------------------- ... ------- ----------- ------------ -
→˓-----------

1 638.74554 7.358276 9.678123990684229e-06 ... -999.0 -999.0 -999.0 ␣
→˓ -999.0

2 52.5378 15.138286 0.0007821264390706773 ... -999.0 -999.0 0.0 ␣
→˓ 3.5255525

3 500.59454 1146.9167 0.012262252608200411 ... -999.0 -999.0 4.513517 ␣
→˓ 6.1514697

4 879.47473 1098.4614 2.762548642098426e-05 ... -999.0 -999.0 4.222008 ␣
→˓ 5.0135765

5 99.23588 1012.4829 7.044837003541005e-06 ... -999.0 -999.0 3.5682483 ␣
→˓ 4.5748672

6 67.8556 1023.36334 0.0036609541234138973 ... -999.0 -999.0 3.7424104 ␣
→˓ 4.9484925

7 654.096 918.19916 2.5297123639012174e-05 ... -999.0 -999.0 4.6524267 ␣
→˓ 4.829588

8 855.02795 830.9594 6.732778544641382e-06 ... -999.0 -999.0 6.675581 ␣
→˓ 6.2657185

9 1026.4033 835.157 0.0433908185530153 ... -999.0 -999.0 4.068429 ␣
→˓ 12.851359

10 380.1143 726.31464 0.00041709156417067195 ... -999.0 -999.0 4.370194 ␣
→˓ 4.4451947

11 994.73755 721.932 0.012686314238205688 ... -999.0 -999.0 4.6524267 ␣
→˓ 9.30962

... ␣
→˓ ...

18 854.6116 352.42896 1.5660364975379077e-05 ... -999.0 -999.0 4.222008 ␣
→˓ 4.193287

(continues on next page)

12 Chapter 1. Basic DRAGONS Workshop

Collection of DRAGONS Workshops, Release 1.1

(continued from previous page)

19 522.56934 317.01556 0.0012430236331253412 ... -999.0 -999.0 3.5682483 ␣
→˓ 3.738548

20 936.59576 242.70079 7.264929326425364e-06 ... -999.0 -999.0 4.068429 ␣
→˓ 4.1155357

21 811.8014 225.92892 8.23835737153326e-05 ... -999.0 -999.0 3.9088202 ␣
→˓ 4.1611533

22 478.92426 217.57622 0.02797088088581828 ... -999.0 -999.0 8.812923 ␣
→˓ -999.0

23 479.3753 206.3997 0.022581652547939684 ... -999.0 -999.0 12.257336 ␣
→˓ 12.230416

24 478.64758 194.86026 0.009814622938623417 ... -999.0 -999.0 2.7639532 ␣
→˓ 15.229653

25 521.57794 209.82019 0.029336651973282495 ... -999.0 -999.0 3.1915383 ␣
→˓ 16.864668

26 479.6435 152.71979 3.3380840555892644e-06 ... -999.0 -999.0 3.9088202 ␣
→˓ 3.7304442

27 955.26416 150.0823 7.081766055952015e-05 ... -999.0 -999.0 3.7424104 ␣
→˓ 4.108046

28 561.57697 151.73418 0.021476893612064937 ... -999.0 -999.0 6.675581 ␣
→˓ 9.169356

29 129.58281 107.06496 0.0009807660866281128 ... -999.0 -999.0 3.3851376 ␣
→˓ 3.6767333

See the astropy documentation for information about how to operate on Table objects: https://docs.astropy.org/en/
stable/table/.

For more on astrodata, see the .

1.7 Local calibration manager

The local calibration manager is the tool that will allow DRAGONS to find the most appropriate processed calibration
for the data being reduced.

The local calibration manager contains all the same rules as the Gemini Observatory Archive, but works locally, with
your files, without internet, and alongside DRAGONS to make the calibration association as seamless as possible. As
we have seen in the demo earlier, we create the master calibrations, we add them to the database, and when DRAGONS
(reduce) needs one, it gets matched and retrieved automatically.

The system uses a lightweight sqlite database that will not store the data file, it will store only information about
the file, like its location on disk, and key astrodata tags and descriptors.

Warning: If you move or delete a processed calibration on disk after having entered it in the database, the cali-
bration manager will no longer be able to find it. The database does not contain the file, just information about the
file.

See the documentation for more information, including information about the programming interface.

1.7. Local calibration manager 13

https://docs.astropy.org/en/stable/table/
https://docs.astropy.org/en/stable/table/

Collection of DRAGONS Workshops, Release 1.1

1.7.1 Configuration and initialization

Warning: The information provided here applies to DRAGONS version 3.1 (and newer). The configuration and
features of the calibration manager in the previous versions, 3.0 and older, are substantially different. Please refer
to a previous version of this workhop if you are using DRAGONS 3.0 or older,

https://collection-of-dragons-workshops.readthedocs.io/en/v1.0.0/BasicDRAGONS-2hr/sphinx/
caldb.html

Configuration

The behavior and configuration of the local calibration manager are controlled in the file ~/.dragons/dragonsrc.
When you first install DRAGONS, you will have to create that directory and that file.

If you ran the demo earlier, the dragonsrc file should look like this:

[calibs]
databases = <where_the_data_package_is>/niriimg_tutorial/playground/cal_manager.db get

The value of databases can be any existing path on your machine. The calibration database will be created, and then
expected to be in that directory. The database name can be anything, here we name it cal_manager.db for continuity
with pre-v3.1 DRAGONS.

We recommend setting up a new database for each observing project. It helps keep things clean and avoids calibrations
from other programs being unexpectedly picked up. (If they were picked up, they would be a match, but it might get
confusing if you are expecting another calibration to be picked up.)

Here is an example of a dragonsrc with several databases entries. Note that at all times, only one databases
directive is active, the others are commented out.

[calibs]
databases = /Users/klabrie/data/tutorials/niriimg_tutorial/playground/cal_manager.db get
#databases = /Users/klabrie/data/tutorials/gmosimg_tutorial/playground/cal_manager.db get

#databases = /Users/klabrie/data/workspace/GMOS540feature/cal_manager.db get

Initialization

Once your dragonsrc is set up, you can create a new database with

caldb init

If the database already exists, that command will refuse to work. This ensures that you will not wipe the database
accidentally. The init is required only once. If you already have the database created, maybe even populated, you
can switch back to it simply by ensuring databases points to it.

Exercise - Caldb 1

Create a new database in the niri_tutorial directory. Keep the playground entry that should already be there, but
deactivate it.

Confirm with ls that a new cal_manager.db has been created. You can also use caldb config to confirm that the
new database is active.

14 Chapter 1. Basic DRAGONS Workshop

https://collection-of-dragons-workshops.readthedocs.io/en/v1.0.0/BasicDRAGONS-2hr/sphinx/caldb.html
https://collection-of-dragons-workshops.readthedocs.io/en/v1.0.0/BasicDRAGONS-2hr/sphinx/caldb.html

Collection of DRAGONS Workshops, Release 1.1

[Solution]

1.7.2 Usage

The usage is fairly basic. One can list the content, add content, and remove content. DRAGONS will retrieve content
from the database. If the “store” flag is set, DRAGONS will also automatically add content to the database.

Warning: In DRAGONS version 3.0 and older, DRAGONS cannot add content automatically, the user must add
the processed calibrations to the database with an explicit caldb add.

To verify which database is currently active, use the config option:

caldb config

To see the content of the database:

caldb list

To add information about a processed calibration to the database:

caldb add name_of_file.fits

And finally, to delete information about one file from the database:

caldb remove name_of_file.fits

remove will only remove the entry in the database, it will not remove the file on disk.

Exercise - Caldb 2

Do Exercise - Caldb 1 first.

1. Add the flat field from the demo to the new calibration manager created in the first exercise.

2. Show the content of that database is indeed just that file.

3. Reactivate the original database (the one in playground that we used for the demo) and list its content. Both
the dark and the flat should now be listed.

[Solution]

1.8 Using reduce

The reduce command (and the Reduce class if you are using the programming interface) is what drives DRAGONS.
The command has a lot of options. We have used a few already. Let’s review those and show a few more.

First, to see the list of options available, use the -h flag:

reduce -h

1.8. Using reduce 15

Collection of DRAGONS Workshops, Release 1.1

1.8.1 Setting the suffix of the final outputs

It is not possible to set the name of the final output. This seems odd, but here is why. There might be more than one
output, there can be dozens, it depends on the recipe.

We are still exploring solutions to this problem.

In the meantime, the user can set the suffix of the outputs. Each primitive has a meaningful suffix attached to it,
for example _sourcesDetected for the primitive detectSources. The output of a reduce call will get the suffix
assigned to the last primitive of the recipe.

If you wish to override that, you can set the --suffix option.

reduce @targets --suffix=_mytest

Exercise - “reduce” 1

Run the primitive detectSources on the flux standard stack (N20160102S0296_stack.fits) and set the output
suffix to _ILoveDRAGONS.

Hint: To specify a recipe or a primitive to run, remember the -r flag.

[Solution]

1.8.2 Customizing parameters

We have seen earlier how to check the available input parameters and their default settings for a given frame and
primitive. The command does that. For example:

showpars ../playdata/example1/N20160102S0363.fits normalizeFlat

The syntax to change the value of an input parameter is as follow:

reduce file.fits -p primitive:parameter=value

Exercise - “reduce” 2

Reduce the flats from the demo again but this time set the scaling for normalizeFlat flat to mean. To avoid overwriting
our “real” processed flat, let’s set the suffix to _exercise2.

Hint: cat flats.lis to get the name of a flat to use with showpars.

[Solution]

16 Chapter 1. Basic DRAGONS Workshop

Collection of DRAGONS Workshops, Release 1.1

1.8.3 Running non-default recipes

A recipe library often contains several recipes. One recipe in the library is set as the default library. If one wants to
run a different library, its name can be specified on the command line using the -r flag.

As we have seen before to see the list of all available recipes, we can use the command with the --all flag.

showrecipes ../playdata/example1/N20160102S0270.fits --all

Input file: /Users/klabrie/data/tutorials/niriimg_tutorial/playdata/example1/
→˓N20160102S0270.fits
Input tags: {'GEMINI', 'NORTH', 'NIRI', 'UNPREPARED', 'SIDEREAL', 'IMAGE', 'RAW'}
Recipes available for the input file:

geminidr.niri.recipes.sq.recipes_IMAGE::alignAndStack
geminidr.niri.recipes.sq.recipes_IMAGE::makeSkyFlat
geminidr.niri.recipes.sq.recipes_IMAGE::reduce
geminidr.niri.recipes.qa.recipes_IMAGE::makeSkyFlat
geminidr.niri.recipes.qa.recipes_IMAGE::reduce
geminidr.niri.recipes.sq.recipes_IMAGE::alignAndStack
geminidr.niri.recipes.sq.recipes_IMAGE::makeSkyFlat
geminidr.niri.recipes.sq.recipes_IMAGE::reduce

The strings sq and qa refer to the reduction mode. The qa mode, Quality Assessment, is used internally at Gemini.
General users will be using the sq, Science Quality, recipes.

Warning: The last three “sq” recipes in the list above are really the “ql”, quicklook, recipes. This a known bug
(circa April 2023). The NIRI quicklook recipes are identical to the science recipes and are just “Python-imported”
from the science module, and that import trips the current implementation of showrecipes.

The reduction mode is sq by default. To change that one uses the --qa or --ql flags with reduce. We will be using
the science quality recipes here so we do not need those flags in this version of workshop.

The syntax to select the specific recipe we want to use is:

reduce file1.fits file2.fits -r recipename (optional --ql/--qa)

The -r option can also be used to primitives as we have seen elsewhere. Just type the name of the primitive instead of
the recipe:

reduce file1.fits file2.fits -r primitivename

Another use of the -r option is to run personal recipes rather than the ones distributed with DRAGONS. We will show
how that is done in the next chapter.

Exercise - “reduce” 3

Run the makeSkyFlat recipe on the science frames. Set the suffix to _skyflat. Note that because the target fills
the field-of-view of the science frames, the sky flat in this particular case will not be usable, but it’s okay, we are just
exploring the reduce command-line here.

[Solution]

1.8. Using reduce 17

Collection of DRAGONS Workshops, Release 1.1

1.8.4 Overriding the calibration selection

If you wish to force DRAGONS to use a specific processed calibration, overriding the automatic selection, you can use
the --user_cal flag. Here is a usage example.

reduce file1.fits file2.fits --user_cal processed_arc:my_arc.fits

Exercise - “reduce” 4

In the demo, we reduced the flux standard as follow:

reduce @stdstar.lis -p darkCorrect:do_cal=skip

Modify this command to allow the dark correction to use the processed dark we used for the science frame,
N20160102S0423_dark.fits.

[Solution]

1.8.5 The “at”-file

We have use the “at”-file already. That @ symbol followed by the name of the file list, that’s an “at”-file. They are very
convenient to pass a list of files, but their use is not limited to list of files.

Anything following the reduce command can be put in a file and prefixed with the @ symbol on the reduce command
line.

Let say that we have a very customized call to reduce:

reduce @stdstar.lis -r makeSkyFlat --suffix _skyflat \
-p stackFrames:reject_method=minmax stackFrames:operation=median \
skyCorrect:scale=False --user_cal processed_dark:N20160102S0423_dark.fits

That would be rather tedious to type again and again, or to edit to experiment with the parameter values. Also, when
experimenting, it might be nice to keep of record of what is being attempted.

All this can be written to a file and passed to reduce with @.

Let’s write that file, let’s call it params, any name will do:

I can add comments

-r makeSkyFlat # in-line comments too
--suffix _skyflat

-p
stackFrames:reject_method=minmax
stackFrames:operation=median
#stackFrames:operation=mean # I can comment out options to try something else

skyCorrect:scale=False

--user_cal processed_dark:N20160102S0423_dark.fits

the file is completely free-form

18 Chapter 1. Basic DRAGONS Workshop

Collection of DRAGONS Workshops, Release 1.1

Then to use that file:

reduce @stdstar.lis @params

The “at”-files can even be nested, for example I could add @stdstar.lis to my params file:

@stdstar.lis

-r makeSkyFlat
--suffix skyflat

-p
stackFrames:reject_method=minmax
stackFrames:operation=median

skyCorrect:scale=False

--user_cal processed_dark=N20160102S0423_dark.fits

And just call @params, the @stdstar.lis will be expanded as if it had been on the command line.

reduce @params

1.9 Customize Recipes

Sometimes the DRAGONS recipes are not quite what is needed. It is possible to customize a recipe and have DRAG-
ONS run it. The easiest way to customize a recipe is to find the most appropriate one, copy it over and edit it.

Here we will show you how to write intermediate results to disk for inspection.

The first step is to find a recipe and copy it to the local directory. Let’s find the default NIRI science imaging recipe.

showrecipes ../playdata/example1/N20160102S0270.fits

The recipe name and the recipe library location returned will look like this:

...
Input recipe: reduce
...
Recipe location: /Users/klabrie/condaenvs/public3.10_3.1.0/lib/python3.10/site-packages/
→˓geminidr/niri/recipes/sq/recipes_IMAGE.py
...

Note: The file might end with .pyc instead of .py. This is the compiled file, the code file is in the same location and
named .py. That is the file we will copy over. It is not clear at this time why the .pyc is sometimes returned instead
of the .py filename.

cp /Users/klabrie/condaenvs/public3.10_3.1.0/lib/python3.10/site-packages/geminidr/niri/
→˓recipes/sq/recipes_IMAGE.py .

You should now have a file named recipes_IMAGE.py in your current directory. Let’s rename it for clarity:

1.9. Customize Recipes 19

Collection of DRAGONS Workshops, Release 1.1

mv recipes_IMAGE.py myNIRIrecipes.py

Use your favorite editor to open myNIRIrecipes.py to edit the recipe named reduce. We will save some intermediate
results: the flat corrected files and the sky corrected frames before alignment and stacking. To do that we need to add
writeOutputs after flatCorrect and skyCorrect.

p.prepare()
p.addDQ()
p.removeFirstFrame()
p.ADUToElectrons()
p.addVAR(read_noise=True, poisson_noise=True)
p.nonlinearityCorrect()
p.darkCorrect()
p.flatCorrect()
p.writeOutputs()
p.separateSky()
p.associateSky(stream='sky')
p.skyCorrect(instream='sky', mask_objects=False, outstream='skysub')
p.detectSources(stream='skysub')
p.transferAttribute(stream='sky', source='skysub', attribute='OBJMASK')
p.clearStream(stream='skysub')
p.associateSky()
p.skyCorrect(mask_objects=True)
p.writeOutputs()
p.detectSources()
p.adjustWCSToReference()
p.resampleToCommonFrame()
p.stackFrames()
p.writeOutputs()
return

Note that some of the primitives in the recipe have parameters set in the recipe itself. Parameter values set in a recipe
will always take precedence. Those cannot be changed by the user from the command line.

Now that we have an edited recipe that will write the flat corrected and the pre-alignment sky corrected frames, how do
we run it? With -r of course! But the syntax is just a touch different. We need to specific both the name of our recipe
library (myNIRIrecipes) and the name of the recipe (reduce).

reduce @target.lis -r myNIRIrecipes.reduce

The new intermediate outputs have the suffixes _flatCorrected and skySubtracted.

Exercise - Custom Recipe 1

Edit the master flat recipe to write the pre-normalized flat to disk, and to display the master flat at the end of the recipe.

Hint: cat flats.lis to get the name of a flat to use with showrecipes to get the location and name of the NIRI flat
recipe library.

[Solution]

20 Chapter 1. Basic DRAGONS Workshop

Collection of DRAGONS Workshops, Release 1.1

1.10 Tools

DRAGONS offers some tools to help with the bookkeeping. We have used dataselect already to create lists, we used
showpars and showrecipes to check the primitive parameter settings and the recipes.

Here we will explore dataselect a bit more, and introduce showd and typewalk.

Additional information about the tools can be found in the chapter of the .

1.10.1 typewalk

The oddly-named typewalk tool allows the user the list the astrodata tags (formerly “types”) of all the files in a
directory, and can recurse (“walk”) through subdirectories. It can also be used to select data on tags, but we recommend
using the much more flexible dataselect for that.

To see the type of data files that we have in playdata/example1 and see which tags are available for selection:

typewalk --dir ../playdata/example1

directory: /Users/klabrie/data/tutorials/niriimg_tutorial/playdata/example1
N20160102S0270.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0271.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0272.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0273.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0274.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0275.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0276.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0277.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0278.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0279.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0295.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0296.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0297.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0298.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0299.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0363.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)

(continues on next page)

1.10. Tools 21

Collection of DRAGONS Workshops, Release 1.1

(continued from previous page)

N20160102S0364.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)
N20160102S0365.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)
N20160102S0366.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)
N20160102S0367.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)
N20160102S0368.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)
N20160102S0369.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)
N20160102S0370.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)
N20160102S0371.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)
N20160102S0372.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)
N20160102S0373.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0374.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0375.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0376.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0377.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0378.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0379.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0380.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0381.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0382.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0423.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0424.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0425.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣

(continues on next page)

22 Chapter 1. Basic DRAGONS Workshop

Collection of DRAGONS Workshops, Release 1.1

(continued from previous page)

→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0426.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0427.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0428.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0429.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0430.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0431.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0432.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0463.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0464.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0465.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0466.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0467.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0468.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0469.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0470.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0471.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0472.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)

From that output we see the darks with their DARK tag, the flats with the FLAT tags, some with LAMPON, some with
LAMPOFF. The science frames do not have the CAL (for calibration) tag.

1.10.2 showd

typewalk shows tags, showd shows the values of astrodata . The list available descriptor is included in an appendix
of the .

The syntax is:

showd -d descriptor_name filenames
showd -d descriptor1,descriptor2,descriptorN filenames

The default is to print on the terminal. A comma-separate list can be produced with the --csv flag.

Exercise - Tools 1

1.10. Tools 23

Collection of DRAGONS Workshops, Release 1.1

Get the exposure time, filter name, and UT date of all the observations in playdata/example1. Use the list from the
.

[Solution]

1.10.3 dataselect

dataselect is a powerful tool to create list of exactly the files you want based on tags and descriptors values.

You can include tags, exclude tags, and use Python comparison operators on the descriptors.

Here are a few examples.

Select only darks:

dataselect ../playdata/example1/*.fits --tags DARK

Select only non-darks:

dataselect ../playdata/example1/*.fits --xtags DARK

Select lamp-on flats:

dataselect ../playdata/example1/*.fits --tags FLAT,LAMPON

Select any frames with exposure time of 10 seconds:

dataselect ../playdata/example1/*.fits --expr="exposure_time==10"

Select 20-second darks:

dataselect ../playdata/example1/*.fits --tags DARK --expr="exposure_time==20"

Select any frames observed on or after 2016-01-03:

dataselect ../playdata/example1/*.fits --expr="ut_date>='2016-01-03'"

We can combine dataselect and showd. Here we are going to get the observation type, as defined in the Gemini
Observing Tool (OT), for those frames observed on or after 2016-01-03:

dataselect ../playdata/example1/*.fits --expr="ut_date>='2016-01-03'" | showd -d␣
→˓observation_type

The expression in --expr is a Python expression using the Python syntax. Note the double == for equality in the
examples above. Using a single = is a common mistake.

Also, be careful with the quotes. The external quotes must be different from the internal quotes used around strings.

Finally, the expression can use the and and or logical operators.

Exercise - Tools 2

Knowing that the science frames and the flux standard have an observation type of ‘OBJECT’, and that the science
frames observation class is “science” while the flux standards are “partnerCal”, create a list of science frames and a
list of flux standards without using the object names. Send the output to showd to print the object name.

Descriptors: observation_type, observation_class, object.

24 Chapter 1. Basic DRAGONS Workshop

Collection of DRAGONS Workshops, Release 1.1

[Solution]

1.11 Resources

The DRAGONS documentation is available on “readthedocs” at https://dragons.readthedocs.io/

DRAGONS and all its dependencies are installed with conda. Installation instruction and a lot of information about
how to use DRAGONS are provided in the .

The list of is found in .

There are a series of tutorials available on the main DRAGONS portal. They cover reduction of imaging data for each
of the current facility imagers.

The code is available on github at: https://github.com/GeminiDRSoftware/DRAGONS

Request for help should be done via the Gemini Helpdesk system using the Topic “DRAGONS”.

1.12 Solutions to exercises

1.12.1 Solutions to Recipe and recipe libraries exercises

Solution to Exercise - Recipes 1

The command is used on the file. Highlighted below is the name of the default recipe, makeProcessedFlat, and the
primitives that will be run.

showrecipes ../playdata/example1/N20160102S0373.fits

Recipe not provided, default recipe (makeProcessedFlat) will be used.
Input file: /Users/klabrie/data/tutorials/niriimg_tutorial/playdata/example1/
→˓N20160102S0373.fits
Input tags: ['GCALFLAT', 'NORTH', 'AT_ZENITH', 'NON_SIDEREAL', 'AZEL_TARGET', 'RAW',
→˓'IMAGE', 'GCAL_IR_ON', 'NIRI', 'GEMINI', 'UNPREPARED', 'LAMPON', 'CAL', 'FLAT']
Input mode: sq
Input recipe: makeProcessedFlat
Matched recipe: geminidr.niri.recipes.sq.recipes_FLAT_IMAGE::makeProcessedFlat
Recipe location: /Users/klabrie/condaenvs/public3.10_3.1.0/lib/python3.10/site-packages/
→˓geminidr/niri/recipes/sq/recipes_FLAT_IMAGE.py
Recipe tags: {'FLAT', 'IMAGE', 'CAL', 'NIRI'}
Primitives used:

p.prepare()
p.addDQ()
p.addVAR(read_noise=True)
p.nonlinearityCorrect()
p.ADUToElectrons()
p.addVAR(poisson_noise=True)
p.makeLampFlat()
p.normalizeFlat()
p.thresholdFlatfield()
p.storeProcessedFlat()

1.11. Resources 25

https://dragons.readthedocs.io/
https://dragons.readthedocs.io/
https://github.com/GeminiDRSoftware/DRAGONS
https://www.gemini.edu/sciops/helpdesk/submit-general-helpdesk-request

Collection of DRAGONS Workshops, Release 1.1

Solution to Exercise - Recipes 2

Again is used. The recipe location, the input file tags, and the recipe tags are highlighted.

showrecipes ../playdata/example1/N20160102S0423.fits

Recipe not provided, default recipe (makeProcessedDark) will be used.
Input file: /Users/klabrie/data/tutorials/niriimg_tutorial/playdata/example1/
→˓N20160102S0423.fits
Input tags: ['NON_SIDEREAL', 'AT_ZENITH', 'NIRI', 'NORTH', 'UNPREPARED', 'AZEL_TARGET',
→˓'GEMINI', 'RAW', 'DARK', 'CAL']
Input mode: sq
Input recipe: makeProcessedDark
Matched recipe: geminidr.niri.recipes.sq.recipes_DARK::makeProcessedDark
Recipe location: /Users/klabrie/condaenvs/public3.10_3.1.0/lib/python3.10/site-packages/
→˓geminidr/niri/recipes/sq/recipes_DARK.py
Recipe tags: {'NIRI', 'DARK', 'CAL'}
Primitives used:

p.prepare()
p.addDQ(add_illum_mask=False)
p.addVAR(read_noise=True)
p.nonlinearityCorrect()
p.ADUToElectrons()
p.addVAR(poisson_noise=True)
p.stackDarks()
p.storeProcessedDark()

Solution to Exercise - Recipes 3

The option --all is used to show all the recipes. Note in the module path the sq and the qa. The recipe names can be
the same but their content will differ depending on the reduction mode selected. Default is always sq, science quality.

The last three “sq” recipes are really the “ql” recipes. This a known bug (circa April 2023). The NIRI quicklook recipes
are identical to the science recipes and are just “Python imported” from the science module, and that import trips the
current implementation of showrecipes.

showrecipes ../playdata/example1/N20160102S0270.fits --all

geminidr.niri.recipes.sq.recipes_IMAGE::alignAndStack
geminidr.niri.recipes.sq.recipes_IMAGE::makeSkyFlat
geminidr.niri.recipes.sq.recipes_IMAGE::reduce
geminidr.niri.recipes.qa.recipes_IMAGE::makeSkyFlat
geminidr.niri.recipes.qa.recipes_IMAGE::reduce
geminidr.niri.recipes.sq.recipes_IMAGE::alignAndStack
geminidr.niri.recipes.sq.recipes_IMAGE::makeSkyFlat
geminidr.niri.recipes.sq.recipes_IMAGE::reduce

To see the content of a specific recipe, name it with the -r flag.

showrecipes ../playdata/example1/N20160102S0270.fits -r makeSkyFlat

Finally, to print the content of the quality assessment, “qa”, recipe named reduce (also the default in that qa library),
use the -m flag:

26 Chapter 1. Basic DRAGONS Workshop

Collection of DRAGONS Workshops, Release 1.1

showrecipes ../playdata/example1/N20160102S0270.fits -r reduce -m qa

1.12.2 Solutions to Primitives exercises

Solution to Exercise - Primitives 1

The first step is get yourself familiarized with the primitive names. This can be done by looking at the recipe.

showrecipes ../playdata/example1/N20160102S0270.fits

p.prepare()
p.addDQ()
p.removeFirstFrame()
p.ADUToElectrons()
p.addVAR(read_noise=True, poisson_noise=True)
p.nonlinearityCorrect()
p.darkCorrect()
p.flatCorrect()
p.separateSky()
p.associateSky(stream='sky')
p.skyCorrect(instream='sky', mask_objects=False, outstream='skysub')
p.detectSources(stream='skysub')
p.transferAttribute(stream='sky', source='skysub', attribute='OBJMASK')
p.clearStream(stream='skysub')
p.associateSky()
p.skyCorrect(mask_objects=True)
p.detectSources()
p.adjustWCSToReference()
p.resampleToCommonFrame()
p.stackFrames()
p.writeOutputs()

Question 1:

This question is about sky correction. The primitive skyCorrect is a good bet.

showpars ../playdata/example1/N20160102S0270.fits skyCorrect

...
operation 'median' Averaging operation
Allowed values:

wtmean variance-weighted mean
mean arithmetic mean
median median
lmedian low-median

...

The default for combining the sky frames is median.

Question 2:

The second question asks which paramter controls whether or not the dark correction will be run. Let’s look at
darkCorrect.

1.12. Solutions to exercises 27

Collection of DRAGONS Workshops, Release 1.1

showpars ../playdata/example1/N20160102S0270.fits darkCorrect

Dataset tagged as {'NORTH', 'IMAGE', 'NIRI', 'UNPREPARED', 'SIDEREAL', 'GEMINI', 'RAW'}
Settable parameters on 'darkCorrect':
==
Name Current setting

do_cal 'procmode' Calibration requirement
Allowed values:

procmode Use the default rules set by the processingmode.
force Require a calibration regardless of theprocessing mode.
skip Skip this correction, no calibration required.
None Field is optional

suffix '_darkCorrected' Filename suffix
dark None Dark frame

The parameter do_cal controls the dark correction. Set to “skip”.

Question 3:

The last question is about the stacking of the reduced frames. At the end of the recipe there’s the primitive
stackFrames.

showpars ../playdata/example1/N20160102S0270.fits stackFrames

...
reject_method 'sigclip' Pixel rejection method
Allowed values:

none no rejection
minmax reject highest and lowest pixels
sigclip reject pixels based on scatter
varclip reject pixels based on variance array

...

The reject_method is the answer. It can be set to minmax, to none, to varclip, or to sigclip (currently the default).

1.12.3 Solutions to the Explore data exercises

Solution to Exercise - Explore 1

Question 1

reduce -r display N20160102S0271_stack.fits -p frame=2 threshold=None

Note that we did not use the display: prefix, like in display:frame=2. When the primitive name is not specified,
the instruction applies to all parameters with that name from any primitives in the recipe. Here, we get away with it
because only the display primitive is being run.

Question 2

reduce -r inspect @stdstar.lis -p pause=1

28 Chapter 1. Basic DRAGONS Workshop

Collection of DRAGONS Workshops, Release 1.1

1.12.4 Solutions to the Local calibration manager exercises

Solution to Exercise - Caldb 1

The dragonsrc file should look like this:

[calibs]
#databases = <where_the_data_package_is>/niriimg_tutorial/playground/cal_manager.db get
databases = <where_the_data_package_is>/niriimg_tutorial/cal_manager.db get

ls <where_the_data_package_is>/niriimg_tutorial should show a file called cal_manager.db. And

caldb config

Using configuration files: ('~/.dragons/dragonsrc',)

/Users/klabrie/data/tutorials/niriimg_tutorial/cal_manager.db
Type: LocalDB
Get: True
Store: False

Database file: /Users/klabrie/data/tutorials/niriimg_tutorial/cal_manager.db

The calibration dbs are all local, meaning that remote calibrations will not be␣
→˓downloaded

Solution to Exercise - Caldb 2

It is important do to successfully complete Exercise - Caldb 1 before attempting Exercise 2.

First confirm that the new calibration manager, the one niriimg_tutorial is active.

caldb config

Using configuration files: ('~/.dragons/dragonsrc',)

/Users/klabrie/data/tutorials/niriimg_tutorial/cal_manager.db
Type: LocalDB
Get: True
Store: False

Database file: /Users/klabrie/data/tutorials/niriimg_tutorial/cal_manager.db

The calibration dbs are all local, meaning that remote calibrations will not be␣
→˓downloaded

Question 1

caldb add N20160102S0373_flat.fits

Question 2

1.12. Solutions to exercises 29

Collection of DRAGONS Workshops, Release 1.1

caldb list

N20160102S0373_flat.fits /data/workspace/niriimg_tutorial/playground

Question 3

Edit dragonsrc. Comment out the niriimg_tutorial path and uncomment the playground path.

[calibs]
databases = <where_the_data_package_is>/niriimg_tutorial/playground/cal_manager.db get
#databases = <where_the_data_package_is>/niriimg_tutorial/cal_manager.db get

Confirm activation with caldb config.

caldb list

N20160102S0373_flat.fits /data/workspace/niriimg_tutorial/playground
N20160102S0423_dark.fits /data/workspace/niriimg_tutorial/playground

1.12.5 Solutions to the reduce exercises

Solution to Exercise - “reduce” 1

reduce -r detectSources N20160102S0296_stack.fits --suffix _ILoveDRAGONS

Or

reduce -r detectSources N20160102S0296_stack.fits --suffix=_ILoveDRAGONS

Solution to Exercise - “reduce” 2

reduce @flats.lis -p normalizeFlat:scale=mean --suffix _exercise2

Solution to Exercise - “reduce” 3

reduce @target.lis -r makeSkyFlat --suffix _skyflat

Solution to Exercise - “reduce” 4

While it is not recommended to use a processed dark of the wrong exposure, here is how you would force DRAGONS
to use the science’s master dark on the flux standard from the demo.

reduce @stdstar.lis -p --user_cal processed_dark:N20160102S0423_dark.fits

30 Chapter 1. Basic DRAGONS Workshop

Collection of DRAGONS Workshops, Release 1.1

1.12.6 Solutions to the Customize recipes exercise

Solution to Exercise - Custom Recipe 1

showrecipes ../playdata/example1/N20160102S0363.fits

cp /Users/klabrie/condaenvs/public3.10_3.1.0/lib/python3.10/site-packages/geminidr/niri/
→˓recipes/sq/recipes_FLAT_IMAGE.py .
mv recipes_FLAT_IMAGE.py myNIRIflats.py

p.prepare()
p.addDQ()
p.addVAR(read_noise=True)
p.nonlinearityCorrect()
p.ADUToElectrons()
p.addVAR(poisson_noise=True)
p.makeLampFlat()
p.writeOutputs()
p.normalizeFlat()
p.thresholdFlatfield()
p.storeProcessedFlat()
p.display()

reduce @flats.lis -r myNIRIflats.makeProcessedFlat

1.12.7 Solutions to the Tools exercise

Solution to Exercise - Tools 1

showd -d exposure_time,filter_name,ut_date ../playdata/example1/*.fits

filename exposure_time filter_name ut_date

../playdata/example1/N20160102S0270.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0271.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0272.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0273.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0274.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0275.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0276.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0277.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0278.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0279.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0295.fits 10.005 H_G0203 2016-01-02
../playdata/example1/N20160102S0296.fits 10.005 H_G0203 2016-01-02
../playdata/example1/N20160102S0297.fits 10.005 H_G0203 2016-01-02
../playdata/example1/N20160102S0298.fits 10.005 H_G0203 2016-01-02
../playdata/example1/N20160102S0299.fits 10.005 H_G0203 2016-01-02
../playdata/example1/N20160102S0363.fits 42.001 H_G0203 2016-01-02

(continues on next page)

1.12. Solutions to exercises 31

Collection of DRAGONS Workshops, Release 1.1

(continued from previous page)

../playdata/example1/N20160102S0364.fits 42.001 H_G0203 2016-01-02

../playdata/example1/N20160102S0365.fits 42.001 H_G0203 2016-01-02

../playdata/example1/N20160102S0366.fits 42.001 H_G0203 2016-01-02

../playdata/example1/N20160102S0367.fits 42.001 H_G0203 2016-01-02

../playdata/example1/N20160102S0368.fits 42.001 H_G0203 2016-01-02

../playdata/example1/N20160102S0369.fits 42.001 H_G0203 2016-01-02

../playdata/example1/N20160102S0370.fits 42.001 H_G0203 2016-01-02

../playdata/example1/N20160102S0371.fits 42.001 H_G0203 2016-01-02

../playdata/example1/N20160102S0372.fits 42.001 H_G0203 2016-01-02

../playdata/example1/N20160102S0373.fits 42.001 H_G0203 2016-01-02

../playdata/example1/N20160102S0374.fits 42.001 H_G0203 2016-01-02

../playdata/example1/N20160102S0375.fits 42.001 H_G0203 2016-01-02

../playdata/example1/N20160102S0376.fits 42.001 H_G0203 2016-01-02

../playdata/example1/N20160102S0377.fits 42.001 H_G0203 2016-01-02

../playdata/example1/N20160102S0378.fits 42.001 H_G0203 2016-01-02

../playdata/example1/N20160102S0379.fits 42.001 H_G0203 2016-01-02

../playdata/example1/N20160102S0380.fits 42.001 H_G0203 2016-01-02

../playdata/example1/N20160102S0381.fits 42.001 H_G0203 2016-01-02

../playdata/example1/N20160102S0382.fits 42.001 H_G0203 2016-01-02

../playdata/example1/N20160102S0423.fits 20.002 blank 2016-01-02

../playdata/example1/N20160102S0424.fits 20.002 blank 2016-01-02

../playdata/example1/N20160102S0425.fits 20.002 blank 2016-01-02

../playdata/example1/N20160102S0426.fits 20.002 blank 2016-01-02

../playdata/example1/N20160102S0427.fits 20.002 blank 2016-01-02

../playdata/example1/N20160102S0428.fits 20.002 blank 2016-01-02

../playdata/example1/N20160102S0429.fits 20.002 blank 2016-01-02

../playdata/example1/N20160102S0430.fits 20.002 blank 2016-01-02

../playdata/example1/N20160102S0431.fits 20.002 blank 2016-01-02

../playdata/example1/N20160102S0432.fits 20.002 blank 2016-01-02

../playdata/example1/N20160103S0463.fits 1.001 blank 2016-01-03

../playdata/example1/N20160103S0464.fits 1.001 blank 2016-01-03

../playdata/example1/N20160103S0465.fits 1.001 blank 2016-01-03

../playdata/example1/N20160103S0466.fits 1.001 blank 2016-01-03

../playdata/example1/N20160103S0467.fits 1.001 blank 2016-01-03

../playdata/example1/N20160103S0468.fits 1.001 blank 2016-01-03

../playdata/example1/N20160103S0469.fits 1.001 blank 2016-01-03

../playdata/example1/N20160103S0470.fits 1.001 blank 2016-01-03

../playdata/example1/N20160103S0471.fits 1.001 blank 2016-01-03

../playdata/example1/N20160103S0472.fits 1.001 blank 2016-01-03

Solution to Exercise - Tools 2

dataselect ../playdata/example1/*.fits --expr='observation_class=="science" and␣
→˓observation_type=="OBJECT"' | showd -d object

--
filename object
--
../playdata/example1/N20160102S0270.fits SN2014J
../playdata/example1/N20160102S0271.fits SN2014J

(continues on next page)

32 Chapter 1. Basic DRAGONS Workshop

Collection of DRAGONS Workshops, Release 1.1

(continued from previous page)

../playdata/example1/N20160102S0272.fits SN2014J

../playdata/example1/N20160102S0273.fits SN2014J

../playdata/example1/N20160102S0274.fits SN2014J

../playdata/example1/N20160102S0275.fits SN2014J

../playdata/example1/N20160102S0276.fits SN2014J

../playdata/example1/N20160102S0277.fits SN2014J

../playdata/example1/N20160102S0278.fits SN2014J

../playdata/example1/N20160102S0279.fits SN2014J

dataselect ../playdata/example1/*.fits --expr='observation_class=="partnerCal" and␣
→˓observation_type=="OBJECT"' | showd -d object

filename object

../playdata/example1/N20160102S0295.fits FS 17
../playdata/example1/N20160102S0296.fits FS 17
../playdata/example1/N20160102S0297.fits FS 17
../playdata/example1/N20160102S0298.fits FS 17
../playdata/example1/N20160102S0299.fits FS 17

1.12. Solutions to exercises 33

Collection of DRAGONS Workshops, Release 1.1

34 Chapter 1. Basic DRAGONS Workshop

CHAPTER

TWO

BASIC DRAGONS WORKSHOP - SHORT VERSION

This is the material for truncated version of the Basic DRAGONS Workshop. The full workshop requires 2 hours. This
shorter version is better adapted for a one-hour time slot.

2.1 Learning Objectives

This material is built for a 1-hr workshop, planning on 45 minutes for the workshop and 15 minutes for questions and
helping participants. This is truncated version of the full workshop.

In this workshop, the participants will gain a very basic understanding of the following topic:

• What is DRAGONS, what it isn’t.

• What is a typical DRAGONS workflow.

• What are the principal components of DRAGONS.

• What is a recipe, a recipe library, and a primitive.

• How to do coarse inspection of the data.

• How to use the calibration manager.

• How to customize input parameters and recipes.

• How to control reduce.

• What utility tools are available and how to use them.

This workshop tries to cover a lot in a short period of time. The focus will be on some key, often needed elements. The
participants should refer to the DRAGONS documentation for more in-depth information.

This workshop uses the command-line interface to DRAGONS. An API is available but will not be covered in this
workshop.

2.1.1 Setting up

The participants who wish to following along and run the examples and exercises are expected to have already installed
DRAGONS on their computer. See the installation instructions, .

Follow the Python 3 and DRAGONS instructions, IRAF is not needed. Make sure that you do the steps in the “Configure
DRAGONS” section.

Important: This workshop is written for DRAGONS v3.1

35

http://dragons.readthedocs.io/en/stable

Collection of DRAGONS Workshops, Release 1.1

The participants will need to download the data package to run the examples and the exercises:

http://www.gemini.edu/sciops/data/software/datapkgs/niriim_tutorial_datapkg-extended-v1.tar

Download it and unpack it somewhere convenient.

cd <somewhere convenient>
tar xvf niriim_tutorial_datapkg-extended-v1.tar
bunzip2 niriimg_tutorial/playdata/example1/*.bz2

The datasets are found in the subdirectory niriimg_tutorial/playdata/example1, and we will work in the sub-
directory named niriimg_tutorial/playground.

Finally, for this short version, additional files that would normally be created during the full workshop but are not due
to the time constraint will need to be download and added to the niriimg_tutorial/playground directory.

https://drive.google.com/file/d/1sJd8bHUFZ3-dNVT3_VllcqplnoSZr4LJ/view?usp=sharing

cd <somewhere convenient>/niriimg_tutorial/playground
tar xvzf demo_outputs.tar.gz

The content of the niriimg_tutorial/playground directory should look like this:

N20160102S0271_stack.fits cal_manager.db reduce.log
N20160102S0296_stack.fits calibrations stdstar.lis
N20160102S0373_flat.fits darks20s.lis target.lis
N20160102S0423_dark.fits flats.lis

2.2 What is DRAGONS

2.2.1 What it is

With a little bit of guidance from you, DRAGONS will reduce your Gemini data in a standard way, rapidly, with little
fuss. With a bit more guidance from you, DRAGONS will let you optimize the reduction for your specific sources and
science objectives.

DRAGONS is operated through the reduce command from the shell, or the Reduce class from a Python script. You
choose. For clarity, we will refer to reduce only from now on, but it’s the same thing. A call to reduce activates the
“Recipe System” which is what automates everything.

When reduce is called, the first FITS file is opened and identified, then the libraries of algorithms collected as “prim-
itives” and “recipes” will be searched and the best matches will be selected and run on the data.

An important component of the DRAGONS automation infrastructure is the calibration manager. It is operated with
the caldb command. (Again, there’s an API too.) This accesses a lightweight local database that will store information
about your locally-processed calibrations. When a primitive is run and needs a calibration, the system will automatically
identify the best matched processed calibration and use it, you do not have to specify it on the command line. (Though,
you can if you really want to.)

Then there’s a series of utilities for sorting through the data and learning about the primitives and the recipes.

All of it uses astrodata which is used to open the FITS files. Once a file is opened with astrodata, it “knows about
itself” and that’s how it can find the recipes, primitives, and calibration it needs.

Here’s what DRAGONS can look like from a user’s point view:

36 Chapter 2. Basic DRAGONS Workshop - Short Version

http://www.gemini.edu/sciops/data/software/datapkgs/niriim_tutorial_datapkg-extended-v1.tar
https://drive.google.com/file/d/1sJd8bHUFZ3-dNVT3_VllcqplnoSZr4LJ/view?usp=sharing

Collection of DRAGONS Workshops, Release 1.1

dataselect *.fits --tags=FLAT -o flat.lis
dataselect *.fits --expr="object='mycooltarget'" -o sci.lis
caldb init
reduce @flat.lis
caldb add *_flat.fits
reduce @sci.lis

The steps are:

1. Create your lists of input data.

2. Initialize your calibration database.

3. Reduce your calibrations and upload the info to the database (the upload can be automated).

4. Reduce your science, it will pick up the calibrations by itself.

As straightforward as a reduction can be, it can be customized to match your needs. The options to the primitives can
be adjusted, the recipes themselves can be adjusted.

In this basic introduction to DRAGONS, we will explore all this and learn how to have DRAGONS do our bidding.

2.2.2 What it is not

DRAGONS is not a data analysis package. DRAGONS prepares the data for analysis but does not offer tools to do the
analysis. Also, DRAGONS is also not a replacement for IRAF.

To inspect your data, to do any sort of analysis like photometry, measuring redshift, calculating equivalent width, etc,
you will have to find another tool. DRAGONS does provide a primitive to display an image to ds9, but it will just
display it. Similarly, there is a tool to plot a 1D spectrum, and again, it will just plot it, it not offer any measurement
capabilities.

Any analysis-type tools are beyond the scope of DRAGONS.

2.2.3 Components in action

The diagram below illustrates how the components communicate with each other and in particular how the astrodata
tags and descriptors are passed around to make decisions about the best matched recipe, primitive sets, and calibrations.

2.2. What is DRAGONS 37

Collection of DRAGONS Workshops, Release 1.1

2.3 What are Recipes, Recipe Libraries, and Primitives

A DRAGONS recipe is a set of instructions, called primitives, that processes data in a certain way. Depending on the
recipe, the input data can be in any state of processing. Most often though, people will want to process Gemini raw
data into a master calibration or a processed calibrated output.

A recipe library is a collection of recipes. The recipes in a library have one thing in common: they all apply to the
same type of data. When DRAGONS search for a matching recipe for some input data, it searches for a recipe library.
In each library, one recipe is set as the default recipe. To use the others, the user needs to specify the name of the
non-default recipes.

A primitive is the function that does something to the data. The name of the primitive normally gives you a good idea
of what its purpose is.

38 Chapter 2. Basic DRAGONS Workshop - Short Version

Collection of DRAGONS Workshops, Release 1.1

2.3.1 Recipes

This is what a recipe looks like:

def reduce(p):
p.prepare()
p.addDQ()
p.removeFirstFrame()
p.ADUToElectrons()
p.addVAR(read_noise=True, poisson_noise=True)
p.nonlinearityCorrect()
p.darkCorrect()
p.flatCorrect()
p.separateSky()
p.associateSky(stream='sky')
p.skyCorrect(instream='sky', mask_objects=False, outstream='skysub')
p.detectSources(stream='skysub')
p.transferAttribute(stream='sky', source='skysub', attribute='OBJMASK')
p.clearStream(stream='skysub')
p.associateSky()
p.skyCorrect(mask_objects=True)
p.detectSources()
p.adjustWCSToReference()
p.resampleToCommonFrame()
p.stackFrames()
p.writeOutputs()

A recipe is a Python function that calls “primitives” sequentially. The user does not need to know Python to understand
more or less what is being done to the data when the recipe is run. From the recipe above, we can read that the data
will be corrected for dark current, for flat field effects, the sky background will be subtracted and the frames will be
stacked. The p argument is the primitive set that matches the input.

2.3.2 Recipe libraries

Recipes are stored in recipe libraries, or in Python language, a module. A recipe library can have one or more recipes
in them. One recipe is identified as the default recipe.

When DRAGONS searches for a recipe, it is actually searching for a matching recipe library. Once found, it will run
the default recipe, unless instructed otherwise by the user.

The recipe libraries are associated with the input files by matching astrodata tags (). The tags are qualifiers like
“NIRI”, “IMAGE”, “FLAT”. The tags of the first file in the list of inputs are used. Each recipe library is assigned a set
of tags that defines which type of data this library is for.

2.3. What are Recipes, Recipe Libraries, and Primitives 39

Collection of DRAGONS Workshops, Release 1.1

2.3.3 Primitives and primitive sets

A primitive is a data reduction step involving a transformation of the data or providing a service. By convention, the
primitives are named to convey the scientific meaning of the transformation. For example biasCorrect will remove
the bias signal from the input data.

A primitive is always a member of a primitive set. It is the primitive set that gets matched to the data by the Recipe
System, not the individual primitives.

Technically, a primitive is a method of a primitive class. A primitive class gets associated with the input dataset by
matching the astrodata tags. Once associated, all the primitives in that class, locally defined or inherited, are available
to reduce that dataset. We refer to that collection of primitives as a “primitive set”.

2.3.4 Primitive input parameters

Also attached to a primitive set are the input parameters for each primitives and the defaults appropriate for that primitive
set, that is for that type of data.

For the same generic primitive, the default values for input parameters for NIRI data can be different from the defaults
applicable to GMOS data. Even the set of available input parameters can be different, though we try to keep things as
uniform as possible.

2.3.5 Exploring recipes and primitives

showrecipes

allows the user to see which recipe library gets picked up by the system and which recipe is run by default, which others
are available.

The syntax is:

showrecipes fitsfile_name.fits

Let’s look at a couple examples. From the niriimg_tutorial/playdata/example1/ directory:

Recipe not provided, default recipe (makeProcessedFlat) will be used.
Input file: /Users/klabrie/data/tutorials/niriimg_tutorial/playdata/example1/
→˓N20160102S0373.fits
Input tags: ['GCALFLAT', 'NORTH', 'AT_ZENITH', 'NON_SIDEREAL', 'AZEL_TARGET', 'RAW',
→˓'IMAGE', 'GCAL_IR_ON', 'NIRI', 'GEMINI', 'UNPREPARED', 'LAMPON', 'CAL', 'FLAT']
Input mode: sq
Input recipe: makeProcessedFlat
Matched recipe: geminidr.niri.recipes.sq.recipes_FLAT_IMAGE::makeProcessedFlat
Recipe location: /Users/klabrie/condaenvs/public3.10_3.1.0/lib/python3.10/site-packages/
→˓geminidr/niri/recipes/sq/recipes_FLAT_IMAGE.py
Recipe tags: {'FLAT', 'IMAGE', 'CAL', 'NIRI'}
Primitives used:

p.prepare()
p.addDQ()
p.addVAR(read_noise=True)
p.nonlinearityCorrect()
p.ADUToElectrons()
p.addVAR(poisson_noise=True)
p.makeLampFlat()

(continues on next page)

40 Chapter 2. Basic DRAGONS Workshop - Short Version

Collection of DRAGONS Workshops, Release 1.1

(continued from previous page)

p.normalizeFlat()
p.thresholdFlatfield()
p.storeProcessedFlat()

This contains: the name of the recipe, the location of the recipe library, the :astrodata: tags of the input file, those
assigned to the recipe library, and the recipe itself.

A library can have more than one recipe, to see them all use the --all flag:

showrecipes N20160102S0270.fits --all

Input file: /Users/klabrie/data/tutorials/niriimg_tutorial/playdata/example1/
→˓N20160102S0270.fits
Input tags: {'NIRI', 'NORTH', 'GEMINI', 'UNPREPARED', 'IMAGE', 'RAW', 'SIDEREAL'}
Recipes available for the input file:

geminidr.niri.recipes.sq.recipes_IMAGE::alignAndStack
geminidr.niri.recipes.sq.recipes_IMAGE::makeSkyFlat
geminidr.niri.recipes.sq.recipes_IMAGE::reduce
geminidr.niri.recipes.qa.recipes_IMAGE::makeSkyFlat
geminidr.niri.recipes.qa.recipes_IMAGE::reduce
geminidr.niri.recipes.sq.recipes_IMAGE::alignAndStack
geminidr.niri.recipes.sq.recipes_IMAGE::makeSkyFlat
geminidr.niri.recipes.sq.recipes_IMAGE::reduce

The recipe library for science quality has three recipes: alignAndStack, makeSkyFlat, and reduce.

Note: Regarding the “sq” and “qa” in the paths. DRAGONS has the concept of “reduction mode”. Right now, there
are two modes: the science quality mode, “sq”, and the quality assessment mode, “qa”. You can safely ignore the
“qa” mode, it is used exclusively at the observatory, at night, to help with the assessment of the sky conditions and the
resulting quality of the data. Everything defaults to “sq”.

The last three “sq” recipes are really the “ql” recipes. This a known bug (circa April 2023). The NIRI quicklook recipes
are identical to the science recipes and are just “Python imported” from the science module, and that import trips the
current implementation of showrecipes.

To see what a specific recipe looks like, not just the default recipe, use the -r flag:

showrecipes N20160102S0270.fits -r makeSkyFlat

Input file: /Users/klabrie/data/tutorials/niriimg_tutorial/playdata/example1/
→˓N20160102S0270.fits
Input tags: ['UNPREPARED', 'NORTH', 'NIRI', 'SIDEREAL', 'RAW', 'IMAGE', 'GEMINI']
Input mode: sq
Input recipe: makeSkyFlat
Matched recipe: geminidr.niri.recipes.sq.recipes_IMAGE::makeSkyFlat
Recipe location: /Users/klabrie/condaenvs/gemini3_2.1.x_20200925/lib/python3.6/site-
→˓packages/dragons-2.1.1-py3.6-macosx-10.7-x86_64.egg/geminidr/niri/recipes/sq/recipes_
→˓IMAGE.py
Recipe tags: {'IMAGE', 'NIRI'}
Primitives used:

p.prepare()
p.addDQ()

(continues on next page)

2.3. What are Recipes, Recipe Libraries, and Primitives 41

Collection of DRAGONS Workshops, Release 1.1

(continued from previous page)

p.ADUToElectrons()
p.addVAR(read_noise=True, poisson_noise=True)
p.nonlinearityCorrect()
p.darkCorrect()
p.stackFrames(operation='median', scale=True, outstream='fastsky')
p.normalizeFlat(stream='fastsky')
p.thresholdFlatfield(stream='fastsky')
p.flatCorrect(flat=p.streams['fastsky'][0], outstream='flattened')
p.detectSources(stream='flattened')
p.dilateObjectMask(dilation=10, stream='flattened')
p.addObjectMaskToDQ(stream='flattened')
p.writeOutputs(stream='flattened')
p.transferAttribute(source='flattened', attribute='mask')
p.stackFrames(operation='mean', scale=True, reject_method="minmax", nlow=0, nhigh=1)
p.normalizeFlat()
p.thresholdFlatfield()
p.storeProcessedFlat(force=True)

showpars

Primitive input parameters can be customized. To see the available input parameters, their default values, and range of
allowed values, use . The syntax is:

showpars filename.fits primitive_name

A dataset is required here because the parameters and their defaults do change depending on the type of data. Defaults
between instruments can be different because the data has different characteristics. Also, the primitive might be doing
slightly different things (eg. optical vs near-IR).

Let’s say that we want to reduce NIRI science data, an example of which is file N20160102S0270.fits but we want
to customize the sky correction, the dark correction, and the rejection method during the final stack. Here’s how one
would proceed to check for primitive names and parameters names.

showrecipes N20160102S0270.fits

...
p.prepare()
p.addDQ()
p.removeFirstFrame()
p.ADUToElectrons()
p.addVAR(read_noise=True, poisson_noise=True)
p.nonlinearityCorrect()
p.darkCorrect()
p.flatCorrect()
p.separateSky()
p.associateSky(stream='sky')
p.skyCorrect(instream='sky', mask_objects=False, outstream='skysub')
p.detectSources(stream='skysub')
p.transferAttribute(stream='sky', source='skysub', attribute='OBJMASK')
p.clearStream(stream='skysub')
p.associateSky()
p.skyCorrect(mask_objects=True)

(continues on next page)

42 Chapter 2. Basic DRAGONS Workshop - Short Version

Collection of DRAGONS Workshops, Release 1.1

(continued from previous page)

p.detectSources()
p.adjustWCSToReference()
p.resampleToCommonFrame()
p.stackFrames()
p.writeOutputs()

Here I spot the primtives: skyCorrect, darkCorrect, and stackFrames.

If I wanted to turn off the dark correction. . .

showpars N20160102S0270.fits darkCorrect

Dataset tagged as {'NORTH', 'IMAGE', 'NIRI', 'UNPREPARED', 'SIDEREAL', 'GEMINI', 'RAW'}
Settable parameters on 'darkCorrect':
==
Name Current setting

do_cal 'procmode' Calibration requirement
Allowed values:

procmode Use the default rules set by the processingmode.
force Require a calibration regardless of theprocessing mode.
skip Skip this correction, no calibration required.
None Field is optional

suffix '_darkCorrected' Filename suffix
dark None Dark frame

I would set do_cal to “skip”.

If I wanted to change the operation done when combining sky frames to a mean. . .

showpars N20160102S0270.fits skyCorrect

...
operation 'median' Averaging operation
Allowed values:

mean arithmetic mean
wtmean variance-weighted mean
median median
lmedian low-median

...

I would reset operation to mean.

If I wanted to change the rejection method when doing the final stack. . .

showpars N20160102S0270.fits stackFrames

...
reject_method 'sigclip' Pixel rejection method
Allowed values:

none no rejection
minmax reject highest and lowest pixels
sigclip reject pixels based on scatter

(continues on next page)

2.3. What are Recipes, Recipe Libraries, and Primitives 43

Collection of DRAGONS Workshops, Release 1.1

(continued from previous page)

varclip reject pixels based on variance array
...

I would pick one of the allowed value for reject_method.

2.4 Demo imaging

To get ourselves oriented and get a feel for how data is processed with DRAGONS, we will run a full reduction on our
sample data. The full tutorial to reduce NIRI data can be found at .

Here, we go through the steps with quite a bit less discussion than in the full tutorial as the purpose is simply to provide
some context and an idea of a typical data reduction flow to those who have not experience it before.

The observations are of an extended source, a nearby galaxy. The instrument used is NIRI. The science sequence is a
series of dithers on target with full offset to sky. We will create a master dark, a master flat, a reduced flux standard,
and finally create a calibrated, sky-subtracted stack of the science observations.

Let’s run all the steps.

1. Set up the local calibration manager

2. Create the file lists

3. Create the calibration files (dark, flat)

4. Reduce the flux standard

5. Reduce the science observations

cd <where_the_data_package_is>/niriimg_tutorial/playground

2.4.1 Set up the local calibration manager

We will discuss the local calibration manager in a later chapter.

The calibration manager is the first thing to set up when starting on a data reduction project. It provides the automated
calibration association.

The file to pay attention to is: ~/.dragons/dragonsrc (DRAGONS v3.1+)

For this example, that file to contain the following:

[calibs]
databases = <where_the_data_package_is>/niriimg_tutorial/playground/cal_manager.db get

In this configuration, with the “get” flag, DRAGONS will retrieve the processed calibration automatically from that
database. You could add “store” after the “get” to have DRAGONS add the processed calibrations to the database
automatically (effectively running caldb add for you). Here we will add the calibrations it manually.

About the path for databases, we recommend the directory you are using to work on the data. But it can be anywhere.

Once the configuration file is set up, initialize the database. This needs to be done only once per database.

caldb init

This creates a new file, cal_manager.db, in the directory specified by databases.

44 Chapter 2. Basic DRAGONS Workshop - Short Version

Collection of DRAGONS Workshops, Release 1.1

2.4.2 Create the file lists

The user has to sort the files. DRAGONS is a “User-in-the-Loop” pipeline. We have some tools to help. We will have
a closer look at them later.

We have long darks that match the science, a series of lamp-on and lamp-off flats, a set of on-target dithered observations
for a flux standard, and a set of on-target dithered and off-target dithered observations for the science target.

dataselect ../playdata/example1/*.fits --tags DARK --expr='exposure_time==20' -o␣
→˓darks20s.lis

dataselect ../playdata/example1/*.fits --tags FLAT -o flats.lis

dataselect ../playdata/example1/*.fits --expr='object=="FS 17"' -o stdstar.lis

dataselect ../playdata/example1/*.fits --expr='object=="SN2014J"' -o target.lis

2.4.3 Add static BPM to calibration database

The static BPMs are downloaded from the archive (but included here in our data package).

caldb add ../playdata/example1/bpm_20010317_niri_niri_11_full_1amp.fits

2.4.4 Create the master dark and the master flat

Dark

Create the master dark and add it to the calibration manager.

reduce @darks20s.lis
caldb add N20160102S0423_dark.fits

The @ character before the name of the input file is the “at-file” syntax. We will look into this later.

Flat

Create the master flat from the lamp-on and lamp-off flats and add it to the calibration database.

reduce @flats.lis
caldb add N20160102S0373_flat.fits

2.4.5 Reduce the flux standard

This is short series of on-target dither observations. Darks are not obtained for NIRI flux standard so we turn that step
off. The flat will be picked up from the calibration database.

reduce @stdstar.lis -p darkCorrect:do_cal=skip

2.4. Demo imaging 45

Collection of DRAGONS Workshops, Release 1.1

2.4.6 Reduce the science observations

The sequence is a set of dither on target with full offsets to sky. DRAGONS will sort them during the sky correction.
All calibrations are picked up automatically from the calibration database. Because the target fills the field of view, we
need to turn off the scaling of the sky frames.

reduce @target.lis -p skyCorrect:scale_sky=False

46 Chapter 2. Basic DRAGONS Workshop - Short Version

Collection of DRAGONS Workshops, Release 1.1

2.5 Explore data

Once we have reduced data, we probably want to look at. In fact, even before we start the reduction, we should look at
the raw data in case of issues.

DRAGONS is not an analysis package. But it does offer a basic way to display images.

The display and inspect primitives can be used to visually inspect the data with ds9. Those are primitives not
recipes, yet reduce can run individual primitives.

Note: ds9 must be launched by the user ahead of running the primitive.

2.5.1 Display

To display an image to ds9:

reduce -r display N20160102S0271_stack.fits

It is possible to display to different buffer in ds9, eg. to allow blinking between the frames.

reduce -r display N20160102S0271_stack.fits -p frame=2

2.5.2 Inspect

It is recommended to inspect the raw data prior to reducing the data. A quick visual inspection can catch obviously
bad data, or flag some frames for more detailed inspection. Having to run display on each frame individually would
be painful. The primitive inspect can be used here. It accepts a list of file and will display each frame in sequence,
adding a short pause between the frames. The length of the pause can be controlled with the pause parameter.

reduce -r inspect @stdstar.lis

reduce -r inspect @stdstar.lis -p pause=1

2.6 Local calibration manager

The local calibration manager is the tool that will allow DRAGONS to find the most appropriate processed calibration
for the data being reduced.

The local calibration manager contains all the same rules as the Gemini Observatory Archive, but works locally, with
your files, without internet, and alongside DRAGONS to make the calibration association as seamless as possible. As
we have seen in the demo earlier, we create the master calibrations, we add them to the database, and when DRAGONS
(reduce) needs one, it gets matched and retrieved automatically.

The system uses a lightweight sqlite database that will not store the data file, it will store only information about
the file, like its location on disk, and key astrodata tags and descriptors.

Warning: If you move or delete a processed calibration on disk after having entered it in the database, the cali-
bration manager will no longer be able to find it. The database does not contain the file, just information about the
file.

2.5. Explore data 47

Collection of DRAGONS Workshops, Release 1.1

See the documentation for more information, including information about the programming interface.

2.6.1 Configuration and initialization

Warning: The information provided here applies to DRAGONS version 3.1 (and newer). The configuration and
features of the calibration manager in the previous versions, 3.0 and older, are substantially different. Please refer
to a previous version of this workhop if you are using DRAGONS 3.0 or older,

https://collection-of-dragons-workshops.readthedocs.io/en/v1.0.0/BasicDRAGONS-1hr/sphinx/
caldb.html

Configuration

The behavior and configuration of the local calibration manager are controlled in the file ~/.dragons/dragonsrc.
When you first install DRAGONS, you will have to create that directory and that file.

To complete the exercises, your dragonsrc file must look like this:

[calibs]
databases = <where_the_data_package_is>/niriimg_tutorial/playground/cal_manager.db get

The value of databases can be any existing path on your machine. The calibration database will be created, and then
expected to be in that directory. The database name can be anything, here we name it cal_manager.db for continuity
with pre-v3.1 DRAGONS.

We recommend setting up a new database for each observing project. It helps keep things clean and avoids calibrations
from other programs being unexpectedly picked up. (If they were picked up, they would be a match, but it might get
confusing if you are expecting another calibration to be picked up.)

Here is an example of a dragonsrc with several databases entries. Note that at all times, only one databases
directive is active, the others are commented out.

[calibs]
databases = /Users/klabrie/data/tutorials/niriimg_tutorial/playground/cal_manager.db get
#databases = /Users/klabrie/data/tutorials/gmosimg_tutorial/playground/cal_manager.db get

#databases = /Users/klabrie/data/workspace/GMOS540feature/cal_manager.db get

Initialization

Once your dragonsrc is set up, you can create a new database with

caldb init

If the database already exists, that command will refuse to work. This ensures that you will not wipe the database
accidentally. The init is required only once. If you already have the database created, maybe even populated, you
can switch back to it simply by ensuring databases points to it.

Exercise - Caldb 1

Create a new database in the niri_tutorial directory. Keep the playground entry that should already be there, but
deactivate it.

48 Chapter 2. Basic DRAGONS Workshop - Short Version

https://collection-of-dragons-workshops.readthedocs.io/en/v1.0.0/BasicDRAGONS-1hr/sphinx/caldb.html
https://collection-of-dragons-workshops.readthedocs.io/en/v1.0.0/BasicDRAGONS-1hr/sphinx/caldb.html

Collection of DRAGONS Workshops, Release 1.1

Confirm with ls that a new cal_manager.db has been created. You can also use caldb config to confirm that the
new database is active.

[Solution]

2.6.2 Usage

The usage is fairly basic. One can list the content, add content, and remove content. DRAGONS will retrieve content
from the database. If the “store” flag is set, DRAGONS will also automatically add content to the database.

Warning: In DRAGONS version 3.0 and older, DRAGONS cannot add content automatically, the user must add
the processed calibrations to the database with an explicit caldb add.

To verify which database is currently active, use the config option:

caldb config

To see the content of the database:

caldb list

To add information about a processed calibration to the database:

caldb add name_of_file.fits

And finally, to delete information about one file from the database:

caldb remove name_of_file.fits

remove will only remove the entry in the database, it will not remove the file on disk.

Exercise - Caldb 2

Do Exercise - Caldb 1 first.

1. Add the flat field from the demo (N20160102S0373_flat.fits) to the new calibration manager created in the
first exercise.

2. Show the content of that database is indeed just that file.

3. Reactivate the original database (the one in playground that we used for the demo) and list its content. Both
the dark and the flat should now be listed.

[Solution]

2.6. Local calibration manager 49

Collection of DRAGONS Workshops, Release 1.1

2.7 Using reduce

The reduce command (and the Reduce class if you are using the programming interface) is what drives DRAGONS.
The command has a lot of options. We have used a few already. Let’s review those and show a few more.

First, to see the list of options available, use the -h flag:

reduce -h

2.7.1 Setting the suffix of the final outputs

It is not possible to set the name of the final output. This seems odd, but here is why. There might be more than one
output, there can be dozens, it depends on the recipe. It is not reasonable to ask the user for a dozen different output
strings on the command line, it also interferes with the automation.

We are still exploring solutions to this problem.

In the meantime, the user can set the suffix of the outputs. Each primitive has a meaningful suffix attached to it,
for example _sourcesDetected for the primitive detectSources. The output of a reduce call will get the suffix
assigned to the last primitive of the recipe.

If you wish to override that, you can set the --suffix option.

reduce @targets --suffix=_mytest

2.7.2 Customizing parameters

We have seen earlier how to check the available input parameters and their default settings for a given frame and
primitive. The command does that. For example:

showpars ../playdata/example1/N20160102S0363.fits normalizeFlat

The syntax to change the value of an input parameter is as follow:

reduce file.fits -p primitive:parameter=value

Exercise - “reduce” 1

White down the reduce command to reduce the flats from the demo (flats.lis) but this time set the scaling for
normalizeFlat flat to mean. To avoid overwriting our “real” processed flat, let’s set the suffix to _exercise1.

Hint #1: cat flats.lis to get the name of a flat to use with showpars.

Hint #2: See the command used in the demo

[Solution]

50 Chapter 2. Basic DRAGONS Workshop - Short Version

Collection of DRAGONS Workshops, Release 1.1

2.7.3 Running non-default recipes

A recipe library often contains several recipes. One recipe in the library is set as the default library. If one wants to
run a different library, its name can be specified on the command line using the -r flag.

As we have seen before to see the list of all available recipes, we can use the command with the --all flag.

showrecipes ../playdata/example1/N20160102S0270.fits --all

Input file: /Users/klabrie/data/tutorials/niriimg_tutorial/playdata/example1/
→˓N20160102S0270.fits
Input tags: {'GEMINI', 'NORTH', 'NIRI', 'UNPREPARED', 'SIDEREAL', 'IMAGE', 'RAW'}
Recipes available for the input file:

geminidr.niri.recipes.sq.recipes_IMAGE::alignAndStack
geminidr.niri.recipes.sq.recipes_IMAGE::makeSkyFlat
geminidr.niri.recipes.sq.recipes_IMAGE::reduce
geminidr.niri.recipes.qa.recipes_IMAGE::makeSkyFlat
geminidr.niri.recipes.qa.recipes_IMAGE::reduce
geminidr.niri.recipes.sq.recipes_IMAGE::alignAndStack
geminidr.niri.recipes.sq.recipes_IMAGE::makeSkyFlat
geminidr.niri.recipes.sq.recipes_IMAGE::reduce

The strings sq and qa refer to the reduction mode. The qa mode, Quality Assessment, is used internally at Gemini.
General users will be using the sq, Science Quality, recipes.

Warning: The last three “sq” recipes in the list above are really the “ql”, Quicklook, recipes. This a known bug
(circa April 2023). The NIRI quicklook recipes are identical to the science recipes and are just “Python-imported”
from the science module, and that import trips the current implementation of showrecipes.

The reduction mode is sq by default. To change that, one uses the --qa or soon --ql flags with reduce. We will be
using the science quality recipes here so we do not need those flags in this version of workshop.

The syntax to select the specific recipe we want to use is:

reduce file1.fits file2.fits -r recipename (optional --ql/--qa)

The -r option can also be used to primitives as we have seen elsewhere. Just type the name of the primitive instead of
the recipe:

reduce file1.fits file2.fits -r primitivename

Another use of the -r option is to run personal recipes rather than the ones distributed with DRAGONS. We will show
how that is done in the next chapter.

Exercise - “reduce” 2

Write the command to use the makeSkyFlat recipe on the science frames. Set the suffix to _skyflat.

Note that because the target fills the field-of-view of the science frames, the sky flat in this particular case will not be
usable, but it’s okay, we are just exploring the reduce command-line here.

[Solution]

2.7. Using reduce 51

Collection of DRAGONS Workshops, Release 1.1

2.7.4 Overriding the calibration selection

If you wish to force DRAGONS to use a specific processed calibration, overriding the automatic selection, you can use
the --user_cal flag. Here is a usage example.

reduce file1.fits file2.fits --user_cal processed_<cal>:my_cal.fits

Allowed values for “<cal>”: dark, bias, flat, arc, standard. Eg:

reduce @mylist.lis --user_cal processed_arc:my_special_arc.fits

Exercise - “reduce” 3

In the demo, we reduced the flux standard as follow:

reduce @stdstar.lis -p darkCorrect:do_cal=skip

Modify this command to allow the dark correction to use the processed dark we used for the science frame,
N20160102S0423_dark.fits.

[Solution]

2.8 Customize Recipes

Sometimes the DRAGONS recipes are not quite what is needed. It is possible to customize a recipe and have DRAG-
ONS run it. The easiest way to customize a recipe is to find the most appropriate one, copy it over and edit it.

Here we will show you how to write intermediate results to disk for inspection.

The first step is to find a recipe and copy it to the local directory. Let’s find the default NIRI science imaging recipe.

showrecipes ../playdata/example1/N20160102S0270.fits

The recipe name and the recipe library location returned will look like this:

...
Input recipe: reduce
...
Recipe location: /Users/klabrie/condaenvs/public3.10_3.1.0/lib/python3.10/site-packages/
→˓geminidr/niri/recipes/sq/recipes_IMAGE.py
...

Note: The file might end with .pyc instead of .py. This is the compiled file, the code file is in the same location and
named .py. That is the file we will copy over. It is not clear at this time why the .pyc is sometimes returned instead
of the .py filename.

cp /Users/klabrie/condaenvs/public3.10_3.1.0/lib/python3.10/site-packages/geminidr/niri/
→˓recipes/sq/recipes_IMAGE.py .

You should now have a file named recipes_IMAGE.py in your current directory. Let’s rename it for clarity:

52 Chapter 2. Basic DRAGONS Workshop - Short Version

Collection of DRAGONS Workshops, Release 1.1

mv recipes_IMAGE.py myNIRIrecipes.py

Use your favorite editor to open myNIRIrecipes.py to edit the recipe named reduce. We will save some intermediate
results: the flat corrected files and the sky corrected frames before alignment and stacking. To do that we need to add
writeOutputs after flatCorrect and skyCorrect.

p.prepare()
p.addDQ()
p.removeFirstFrame()
p.ADUToElectrons()
p.addVAR(read_noise=True, poisson_noise=True)
p.nonlinearityCorrect()
p.darkCorrect()
p.flatCorrect()
p.writeOutputs()
p.separateSky()
p.associateSky(stream='sky')
p.skyCorrect(instream='sky', mask_objects=False, outstream='skysub')
p.detectSources(stream='skysub')
p.transferAttribute(stream='sky', source='skysub', attribute='OBJMASK')
p.clearStream(stream='skysub')
p.associateSky()
p.skyCorrect(mask_objects=True)
p.writeOutputs()
p.detectSources()
p.adjustWCSToReference()
p.resampleToCommonFrame()
p.stackFrames()
p.writeOutputs()
return

Note that some of the primitives in the recipe have parameters set in the recipe itself. Parameter values set in a recipe
will always take precedence. Those cannot be changed by the user from the command line.

Now that we have an edited recipe that will write the flat corrected and the pre-alignment sky corrected frames, how do
we run it? With -r of course! But the syntax is just a touch different. We need to specific both the name of our recipe
library (myNIRIrecipes) and the name of the recipe (reduce).

reduce @target.lis -r myNIRIrecipes.reduce

The new intermediate outputs have the suffixes _flatCorrected and _skySubtracted.

Exercise - Custom Recipe 1

Edit the master flat recipe to write the pre-normalized flat to disk, and to display the master flat at the end of the recipe.

Hint: cat flats.lis to get the name of a flat to use with showrecipes to get the location and name of the NIRI flat
recipe library.

[Solution]

2.8. Customize Recipes 53

Collection of DRAGONS Workshops, Release 1.1

2.9 Tools

DRAGONS offers some tools to help with the bookkeeping. We have used dataselect already to create lists, we used
showpars and showrecipes to check the primitive parameter settings and the recipes.

Here we will explore dataselect a bit more, and introduce showd and typewalk.

Additional information about the tools can be found in the chapter of the .

2.9.1 typewalk

The oddly-named typewalk tool allows the user the list the astrodata tags (formerly “types”) of all the files in a
directory, and can recurse (“walk”) through subdirectories. It can also be used to select data on tags, but we recommend
using the much more flexible dataselect for that.

To see the type of data files that we have in playdata/example1 and see which tags are available for selection:

typewalk --dir ../playdata

directory: /Users/klabrie/data/tutorials/niriimg_tutorial/playdata
N20160102S0270.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0271.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0272.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0273.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0274.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0275.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0276.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0277.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0278.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0279.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0295.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0296.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0297.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0298.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0299.fits (GEMINI) (IMAGE) (NIRI) (NORTH) (RAW) (SIDEREAL)␣
→˓(UNPREPARED)
N20160102S0363.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)

(continues on next page)

54 Chapter 2. Basic DRAGONS Workshop - Short Version

Collection of DRAGONS Workshops, Release 1.1

(continued from previous page)

N20160102S0364.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)
N20160102S0365.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)
N20160102S0366.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)
N20160102S0367.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)
N20160102S0368.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)
N20160102S0369.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)
N20160102S0370.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)
N20160102S0371.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)
N20160102S0372.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_OFF) (GEMINI) (IMAGE) (LAMPOFF) (NIRI) (NON_SIDEREAL) (NORTH) (RAW)␣
→˓(UNPREPARED)
N20160102S0373.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0374.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0375.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0376.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0377.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0378.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0379.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0380.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0381.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0382.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (FLAT) (GCALFLAT)␣
→˓(GCAL_IR_ON) (GEMINI) (IMAGE) (LAMPON) (NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0423.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0424.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0425.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣

(continues on next page)

2.9. Tools 55

Collection of DRAGONS Workshops, Release 1.1

(continued from previous page)

→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0426.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0427.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0428.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0429.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0430.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0431.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160102S0432.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0463.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0464.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0465.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0466.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0467.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0468.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0469.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0470.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0471.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)
N20160103S0472.fits (AT_ZENITH) (AZEL_TARGET) (CAL) (DARK) (GEMINI)␣
→˓(NIRI) (NON_SIDEREAL) (NORTH) (RAW) (UNPREPARED)

From that output we see the darks with their DARK tag, the flats with the FLAT tags, some with LAMPON, some with
LAMPOFF. The science frames do not have the CAL (for calibration) tag.

2.9.2 showd

typewalk shows tags, showd shows the values of astrodata . The list available descriptor is included in an appendix
of the .

The syntax is:

showd -d descriptor_name filenames
showd -d descriptor1,descriptor2,descriptorN filenames

The default is to print on the terminal. A comma-separate list can be produced with the --csv flag.

Exercise - Tools 1

56 Chapter 2. Basic DRAGONS Workshop - Short Version

Collection of DRAGONS Workshops, Release 1.1

Get the exposure time, filter name, and UT date of all the observations in playdata/example1. Use the list from the
.

[Solution]

2.9.3 dataselect

dataselect is a powerful tool to create list of exactly the files you want based on tags and descriptors values.

You can include tags, exclude tags, and use Python comparison operators on the descriptors.

Here are a few examples.

Select only darks:

dataselect ../playdata/example1/*.fits --tags DARK

Select only darks and send the results to a file:

dataselect ../playdata/example1/*.fits --tags DARK -o darks.lis

cat darks.lis

Includes tags: ['DARK']
Excludes tags: []
Descriptor expression: None
../playdata/example1/N20160102S0423.fits
../playdata/example1/N20160102S0424.fits
...
../playdata/example1/N20160103S0471.fits
../playdata/example1/N20160103S0472.fits

Select only non-darks:

dataselect ../playdata/example1/*.fits --xtags DARK

Select lamp-on flats:

dataselect ../playdata/example1/*.fits --tags FLAT,LAMPON

Select any frames with exposure time of 10 seconds:

dataselect ../playdata/example1/*.fits --expr="exposure_time==10"

Select 20-second darks:

dataselect ../playdata/example1/*.fits --tags DARK --expr="exposure_time==20"

Select any frames observed on or after 2016-01-03:

dataselect ../playdata/example1/*.fits --expr="ut_date>='2016-01-03'"

We can combine dataselect and showd. Here we are going to get the observation type, as defined in the Gemini
Observing Tool (OT), for those frames observed on or after 2016-01-03:

2.9. Tools 57

Collection of DRAGONS Workshops, Release 1.1

dataselect ../playdata/example1/*.fits --expr="ut_date>='2016-01-03'" | showd -d␣
→˓observation_type

The expression in --expr is a Python expression using the Python syntax. Note the double == for equality in the
examples above. Using a single = is a common mistake.

Also, be careful with the quotes. The external quotes must be different from the internal quotes used around strings.

Finally, the expression can use the and and or logical operators.

Exercise - Tools 2

Knowing that the science frames and the flux standard have an observation type of ‘OBJECT’, and that the science
frames observation class is “science” while the flux standards are “partnerCal”, create a list of science frames and a
list of flux standards without using the object names. Send the output to showd to print the object name.

Descriptors: observation_type, observation_class, object.

[Solution]

2.10 Resources

The DRAGONS documentation is available on “readthedocs” at https://dragons.readthedocs.io/

DRAGONS and all its dependencies are installed with conda. Installation instruction and a lot of information about
how to use DRAGONS are provided in the .

The list of is found in .

There are a series of tutorials available on the main DRAGONS portal. They cover reduction of imaging data for each
of the current facility imagers.

The code is available on github at: https://github.com/GeminiDRSoftware/DRAGONS

Request for help should be done via the Gemini Helpdesk system using the Topic “DRAGONS”.

2.11 Solutions to exercises

2.11.1 Solutions to the Local calibration manager exercises

Solution to Exercise - Caldb 1

The dragonrc file should look like this:

[calibs]
#databases = <where_the_data_package_is>/niriimg_tutorial/playground/cal_manager.db get
databases = <where_the_data_package_is>/niriimg_tutorial/cal_manager.db get

ls <where_the_data_package_is>/niriimg_tutorial should show a file called cal_manager.db. And

58 Chapter 2. Basic DRAGONS Workshop - Short Version

https://dragons.readthedocs.io/
https://dragons.readthedocs.io/
https://github.com/GeminiDRSoftware/DRAGONS
https://www.gemini.edu/sciops/helpdesk/submit-general-helpdesk-request

Collection of DRAGONS Workshops, Release 1.1

caldb config

Using configuration files: ('~/.dragons/dragonsrc',)

/Users/klabrie/data/tutorials/niriimg_tutorial/cal_manager.db
Type: LocalDB
Get: True
Store: False

Database file: /Users/klabrie/data/tutorials/niriimg_tutorial/cal_manager.db

The calibration dbs are all local, meaning that remote calibrations will not be␣
→˓downloaded

Solution to Exercise - Caldb 2

It is important do to successfully complete Exercise - Caldb 1 before attempting Exercise 2.

First confirm that the new calibration manager, the one niriimg_tutorial is active.

caldb config

Using configuration files: ('~/.dragons/dragonsrc',)

/Users/klabrie/data/tutorials/niriimg_tutorial/cal_manager.db
Type: LocalDB
Get: True
Store: False

Database file: /Users/klabrie/data/tutorials/niriimg_tutorial/cal_manager.db

The calibration dbs are all local, meaning that remote calibrations will not be␣
→˓downloaded

Question 1

caldb add N20160102S0373_flat.fits

Question 2

caldb list

N20160102S0373_flat.fits /data/workspace/niriimg_tutorial/playground

Question 3

Edit dragonsrc. Comment out the niriimg_tutorial path and uncomment the playground path.

[calibs]
databases = <where_the_data_package_is>/niriimg_tutorial/playground/cal_manager.db get
#databases = <where_the_data_package_is>/niriimg_tutorial/cal_manager.db get

2.11. Solutions to exercises 59

Collection of DRAGONS Workshops, Release 1.1

Confirm activation with caldb config.

caldb list

N20160102S0373_flat.fits /data/workspace/niriimg_tutorial/playground
N20160102S0423_dark.fits /data/workspace/niriimg_tutorial/playground

2.11.2 Solutions to the reduce exercises

Solution to Exercise - “reduce” 1

reduce @flats.lis -p normalizeFlat:scale=mean --suffix _exercise1

Solution to Exercise - “reduce” 2

reduce @target.lis -r makeSkyFlat --suffix _skyflat

Solution to Exercise - “reduce” 3

While it is not recommended to use a processed dark of the wrong exposure, here is how you would force DRAGONS
to use the science’s master dark on the flux standard from the demo.

reduce @stdstar.lis --user_cal processed_dark:N20160102S0423_dark.fits

2.11.3 Solutions to the Customize recipes exercise

Solution to Exercise - Custom Recipe 1

showrecipes ../playdata/example1/N20160102S0363.fits

cp /Users/klabrie/condaenvs/public3.10_3.1.0/lib/python3.10/site-packages/geminidr/niri/
→˓recipes/sq/recipes_FLAT_IMAGE.py .
mv recipes_FLAT_IMAGE.py myNIRIflats.py

def makeProcessedFlat(p):

p.prepare()
p.addDQ()
p.addVAR(read_noise=True)
p.nonlinearityCorrect()
p.ADUToElectrons()
p.addVAR(poisson_noise=True)
p.makeLampFlat()
p.writeOutputs()
p.normalizeFlat()
p.thresholdFlatfield()

(continues on next page)

60 Chapter 2. Basic DRAGONS Workshop - Short Version

Collection of DRAGONS Workshops, Release 1.1

(continued from previous page)

p.storeProcessedFlat()
p.display()

reduce @flats.lis -r myNIRIflats.makeProcessedFlat

2.11.4 Solutions to the Tools exercise

Solution to Exercise - Tools 1

showd -d exposure_time,filter_name,ut_date ../playdata/example1/*.fits

filename exposure_time filter_name ut_date

../playdata/example1/N20160102S0270.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0271.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0272.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0273.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0274.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0275.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0276.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0277.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0278.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0279.fits 20.002 H_G0203 2016-01-02
../playdata/example1/N20160102S0295.fits 10.005 H_G0203 2016-01-02
../playdata/example1/N20160102S0296.fits 10.005 H_G0203 2016-01-02
../playdata/example1/N20160102S0297.fits 10.005 H_G0203 2016-01-02
../playdata/example1/N20160102S0298.fits 10.005 H_G0203 2016-01-02
../playdata/example1/N20160102S0299.fits 10.005 H_G0203 2016-01-02
../playdata/example1/N20160102S0363.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0364.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0365.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0366.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0367.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0368.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0369.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0370.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0371.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0372.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0373.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0374.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0375.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0376.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0377.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0378.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0379.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0380.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0381.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0382.fits 42.001 H_G0203 2016-01-02
../playdata/example1/N20160102S0423.fits 20.002 blank 2016-01-02

(continues on next page)

2.11. Solutions to exercises 61

Collection of DRAGONS Workshops, Release 1.1

(continued from previous page)

../playdata/example1/N20160102S0424.fits 20.002 blank 2016-01-02

../playdata/example1/N20160102S0425.fits 20.002 blank 2016-01-02

../playdata/example1/N20160102S0426.fits 20.002 blank 2016-01-02

../playdata/example1/N20160102S0427.fits 20.002 blank 2016-01-02

../playdata/example1/N20160102S0428.fits 20.002 blank 2016-01-02

../playdata/example1/N20160102S0429.fits 20.002 blank 2016-01-02

../playdata/example1/N20160102S0430.fits 20.002 blank 2016-01-02

../playdata/example1/N20160102S0431.fits 20.002 blank 2016-01-02

../playdata/example1/N20160102S0432.fits 20.002 blank 2016-01-02

../playdata/example1/N20160103S0463.fits 1.001 blank 2016-01-03

../playdata/example1/N20160103S0464.fits 1.001 blank 2016-01-03

../playdata/example1/N20160103S0465.fits 1.001 blank 2016-01-03

../playdata/example1/N20160103S0466.fits 1.001 blank 2016-01-03

../playdata/example1/N20160103S0467.fits 1.001 blank 2016-01-03

../playdata/example1/N20160103S0468.fits 1.001 blank 2016-01-03

../playdata/example1/N20160103S0469.fits 1.001 blank 2016-01-03

../playdata/example1/N20160103S0470.fits 1.001 blank 2016-01-03

../playdata/example1/N20160103S0471.fits 1.001 blank 2016-01-03

../playdata/example1/N20160103S0472.fits 1.001 blank 2016-01-03

Solution to Exercise - Tools 2

dataselect ../playdata/example1/*.fits --expr='observation_class=="science" and␣
→˓observation_type=="OBJECT"' | showd -d object

--
filename object
--
../playdata/example1/N20160102S0270.fits SN2014J
../playdata/example1/N20160102S0271.fits SN2014J
../playdata/example1/N20160102S0272.fits SN2014J
../playdata/example1/N20160102S0273.fits SN2014J
../playdata/example1/N20160102S0274.fits SN2014J
../playdata/example1/N20160102S0275.fits SN2014J
../playdata/example1/N20160102S0276.fits SN2014J
../playdata/example1/N20160102S0277.fits SN2014J
../playdata/example1/N20160102S0278.fits SN2014J
../playdata/example1/N20160102S0279.fits SN2014J

dataselect ../playdata/example1/*.fits --expr='observation_class=="partnerCal" and␣
→˓observation_type=="OBJECT"' | showd -d object

filename object

../playdata/example1/N20160102S0295.fits FS 17
../playdata/example1/N20160102S0296.fits FS 17
../playdata/example1/N20160102S0297.fits FS 17
../playdata/example1/N20160102S0298.fits FS 17
../playdata/example1/N20160102S0299.fits FS 17

62 Chapter 2. Basic DRAGONS Workshop - Short Version

Collection of DRAGONS Workshops, Release 1.1

• Basic DRAGONS Workshop - Standard Version (~2hrs)

• Basic DRAGONS Workshop - Short Version - Short Version (~1hr)

2.11. Solutions to exercises 63

Collection of DRAGONS Workshops, Release 1.1

64 Chapter 2. Basic DRAGONS Workshop - Short Version

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

65

	Basic DRAGONS Workshop
	Learning Objectives
	Setting up

	What is DRAGONS
	What it is
	What it is not
	Components in action

	What are Recipes and Recipe Libraries
	Recipes
	Exploring recipes

	Recipe libraries

	What are primitives
	Primitives and primitive sets
	Primitive input parameters

	Demo imaging
	Set up the local calibration manager
	Create the file lists
	Add static BPM to calibration database
	Create the master dark and the master flat
	Reduce the flux standard
	Reduce the science observations

	Explore data
	Display
	Inspect
	Accessing table content

	Local calibration manager
	Configuration and initialization
	Configuration
	Initialization

	Usage

	Using reduce
	Setting the suffix of the final outputs
	Customizing parameters
	Running non-default recipes
	Overriding the calibration selection
	The “at”-file

	Customize Recipes
	Tools
	typewalk
	showd
	dataselect

	Resources
	Solutions to exercises
	Solutions to Recipe and recipe libraries exercises
	Solution to Exercise - Recipes 1
	Solution to Exercise - Recipes 2
	Solution to Exercise - Recipes 3

	Solutions to Primitives exercises
	Solution to Exercise - Primitives 1

	Solutions to the Explore data exercises
	Solution to Exercise - Explore 1

	Solutions to the Local calibration manager exercises
	Solution to Exercise - Caldb 1
	Solution to Exercise - Caldb 2

	Solutions to the reduce exercises
	Solution to Exercise - “reduce” 1
	Solution to Exercise - “reduce” 2
	Solution to Exercise - “reduce” 3
	Solution to Exercise - “reduce” 4

	Solutions to the Customize recipes exercise
	Solution to Exercise - Custom Recipe 1

	Solutions to the Tools exercise
	Solution to Exercise - Tools 1
	Solution to Exercise - Tools 2

	Basic DRAGONS Workshop - Short Version
	Learning Objectives
	Setting up

	What is DRAGONS
	What it is
	What it is not
	Components in action

	What are Recipes, Recipe Libraries, and Primitives
	Recipes
	Recipe libraries
	Primitives and primitive sets
	Primitive input parameters
	Exploring recipes and primitives
	showrecipes
	showpars

	Demo imaging
	Set up the local calibration manager
	Create the file lists
	Add static BPM to calibration database
	Create the master dark and the master flat
	Reduce the flux standard
	Reduce the science observations

	Explore data
	Display
	Inspect

	Local calibration manager
	Configuration and initialization
	Configuration
	Initialization

	Usage

	Using reduce
	Setting the suffix of the final outputs
	Customizing parameters
	Running non-default recipes
	Overriding the calibration selection

	Customize Recipes
	Tools
	typewalk
	showd
	dataselect

	Resources
	Solutions to exercises
	Solutions to the Local calibration manager exercises
	Solution to Exercise - Caldb 1
	Solution to Exercise - Caldb 2

	Solutions to the reduce exercises
	Solution to Exercise - “reduce” 1
	Solution to Exercise - “reduce” 2
	Solution to Exercise - “reduce” 3

	Solutions to the Customize recipes exercise
	Solution to Exercise - Custom Recipe 1

	Solutions to the Tools exercise
	Solution to Exercise - Tools 1
	Solution to Exercise - Tools 2

	Indices and tables

